Edexcel S2 2017 January — Question 4

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2017
SessionJanuary
TopicContinuous Probability Distributions and Random Variables
TypeDirect variance calculation from pdf

  1. The time, in thousands of hours, that a certain electrical component will last is modelled by the random variable \(X\), with probability density function
$$f ( x ) = \begin{cases} \frac { 3 } { 64 } x ^ { 2 } ( 4 - x ) & 0 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ Using this model, find, by algebraic integration,
  1. the mean number of hours that a component will last,
  2. the standard deviation of \(X\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce1f9aa7-cf16-4293-98b1-157eed35b761-06_478_974_1069_479} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the probability density function of the random variable \(X\).
  3. Give a reason why the random variable \(X\) might be unsuitable as a model for the time, in thousands of hours, that these electrical components will last.
  4. Sketch a probability density function of a more realistic model.