OCR Further Additional Pure 2020 November — Question 6

Exam BoardOCR
ModuleFurther Additional Pure (Further Additional Pure)
Year2020
SessionNovember
TopicGroups

6 The group \(G\) consists of the set \(\{ 3,6,9,12,15,18,21,24,27,30,33,36 \}\) under \(\times _ { 39 }\), the operation of multiplication modulo 39.
  1. List the possible orders of proper subgroups of \(G\), justifying your answer.
  2. List the elements of the subset of \(G\) generated by the element 3 .
  3. State the identity element of \(G\).
  4. Determine the order of the element 18 .
  5. Find the two elements \(g _ { 1 }\) and \(g _ { 2 }\) in \(G\) which satisfy \(g \times { } _ { 39 } g = 3\). The group \(H\) consists of the set \(\{ 1,2,3,4,5,6,7,8,9,10,11,12 \}\) under \(\times _ { 13 }\), the operation of multiplication modulo 13. You are given that \(G\) is isomorphic to \(H\). A student states that \(G\) is isomorphic to \(H\) because each element \(3 x\) in \(G\) maps directly to the element \(x\) in \(H\) (for \(x = 1,2,3,4,5,6,7,8,9,10,11,12\) ).
  6. Explain why this student is incorrect.