8 The group \(G\) is cyclic and of order 12.
- State the possible orders of all the proper subgroups of \(G\). You must justify your answers.
- List all the elements of each of these subgroups.
- Explain why \(G\) must be abelian.
The group \(\mathbb { Z } _ { k }\) is the cyclic group of order \(k\), consisting of the elements \(\{ 0,1,2 , \ldots , k - 1 \}\) under the operation \(+ _ { k }\) of addition modulo \(k\).
The coordinate group \(\mathrm { C } _ { \mathrm { mn } }\) is the group which consists of elements of the form \(( x , y )\), where \(\mathrm { x } \in \mathbb { Z } _ { \mathrm { m } }\) and \(\mathrm { y } \in \mathbb { Z } _ { \mathrm { n } }\), under the operation \(\oplus\) given by \(\left( \mathrm { x } _ { 1 } , \mathrm { y } _ { 1 } \right) \oplus \left( \mathrm { x } _ { 2 } , \mathrm { y } _ { 2 } \right) = \left( \mathrm { x } _ { 1 } + { } _ { \mathrm { m } } \mathrm { x } _ { 2 } , \mathrm { y } _ { 1 } + { } _ { \mathrm { n } } \mathrm { y } _ { 2 } \right)\). For example, for \(m = 5\) and \(n = 2 , ( 3,0 ) \oplus ( 4,1 ) = ( 2,1 )\).
- List all the elements of \(\mathrm { J } = \mathrm { C } _ { 34 }\).
- Show that \(G\) and \(J\) are isomorphic.
There is a second coordinate group of order 12; that is, \(\mathrm { K } = \mathrm { C } _ { \mathrm { mn } }\), where \(1 < \mathrm { m } < \mathrm { n } < 12\) but neither \(m\) nor \(n\) is equal to 3 or 4 .
- State the values of \(m\) and \(n\) which give \(K\).
- Hence list all of the elements of \(K\).
- Explain why \(K\) must be abelian.
- Show that \(G\) and \(K\) are not isomorphic.
\section*{END OF QUESTION PAPER}