OCR Further Additional Pure 2024 June — Question 8

Exam BoardOCR
ModuleFurther Additional Pure (Further Additional Pure)
Year2024
SessionJune
TopicGroups

8 The group \(G\) is cyclic and of order 12.
    1. State the possible orders of all the proper subgroups of \(G\). You must justify your answers.
    2. List all the elements of each of these subgroups.
    3. Explain why \(G\) must be abelian. The group \(\mathbb { Z } _ { k }\) is the cyclic group of order \(k\), consisting of the elements \(\{ 0,1,2 , \ldots , k - 1 \}\) under the operation \(+ _ { k }\) of addition modulo \(k\). The coordinate group \(\mathrm { C } _ { \mathrm { mn } }\) is the group which consists of elements of the form \(( x , y )\), where \(\mathrm { x } \in \mathbb { Z } _ { \mathrm { m } }\) and \(\mathrm { y } \in \mathbb { Z } _ { \mathrm { n } }\), under the operation \(\oplus\) given by \(\left( \mathrm { x } _ { 1 } , \mathrm { y } _ { 1 } \right) \oplus \left( \mathrm { x } _ { 2 } , \mathrm { y } _ { 2 } \right) = \left( \mathrm { x } _ { 1 } + { } _ { \mathrm { m } } \mathrm { x } _ { 2 } , \mathrm { y } _ { 1 } + { } _ { \mathrm { n } } \mathrm { y } _ { 2 } \right)\). For example, for \(m = 5\) and \(n = 2 , ( 3,0 ) \oplus ( 4,1 ) = ( 2,1 )\).
    1. List all the elements of \(\mathrm { J } = \mathrm { C } _ { 34 }\).
    2. Show that \(G\) and \(J\) are isomorphic. There is a second coordinate group of order 12; that is, \(\mathrm { K } = \mathrm { C } _ { \mathrm { mn } }\), where \(1 < \mathrm { m } < \mathrm { n } < 12\) but neither \(m\) nor \(n\) is equal to 3 or 4 .
    1. State the values of \(m\) and \(n\) which give \(K\).
    2. Hence list all of the elements of \(K\).
    3. Explain why \(K\) must be abelian.
  1. Show that \(G\) and \(K\) are not isomorphic. \section*{END OF QUESTION PAPER}