OCR
Further Additional Pure
2024
June
— Question 1
Exam Board
OCR
Module
Further Additional Pure (Further Additional Pure)
Year
2024
Session
June
Topic
Number Theory
1
The number \(N\) has the base-10 form \(\mathrm { N } = \operatorname { abba } a b b a \ldots a b b a\), consisting of blocks of four digits, as shown, where \(a\) and \(b\) are integers such that \(1 \leqslant a < 10\) and \(0 \leqslant b < 10\).
Use a standard divisibility test to show that \(N\) is always divisible by 11 .
The number \(M\) has the base- \(n\) form \(\mathrm { M } = \operatorname { cddc } c d d c \ldots c d d c\), where \(n > 11\) and \(c\) and \(d\) are integers such that \(1 \leqslant \mathrm { c } < \mathrm { n }\) and \(0 \leqslant \mathrm {~d} < \mathrm { n }\).
Show that \(M\) is always divisible by a number of the form \(\mathrm { k } _ { 1 } \mathrm { n } + \mathrm { k } _ { 2 }\), where \(k _ { 1 }\) and \(k _ { 2 }\) are integers to be determined.