| Exam Board | OCR |
| Module | Further Additional Pure (Further Additional Pure) |
| Year | 2024 |
| Session | June |
| Topic | Number Theory |
3 Determine all integers \(x\) for which \(x \equiv 1 ( \bmod 7 )\) and \(x \equiv 22 ( \bmod 37 )\) and \(x \equiv 7 ( \bmod 67 )\).
Give your answer in the form \(\mathrm { x } = \mathrm { qn } + \mathrm { r }\) for integers \(n , q , r\) with \(q > 0\) and \(0 \leqslant \mathrm { r } < \mathrm { q }\).