OCR Further Pure Core 2 2020 November — Question 10

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2020
SessionNovember
TopicTaylor series
TypeMaclaurin series for inverse trigonometric functions

10 Let \(\mathrm { f } ( x ) = \sin ^ { - 1 } ( x )\).
    1. Determine \(\mathrm { f } ^ { \prime \prime } ( x )\).
    2. Determine the first two non-zero terms of the Maclaurin expansion for \(\mathrm { f } ( x )\).
    3. By considering the first two non-zero terms of the Maclaurin expansion for \(\mathrm { f } ( x )\), find an approximation to \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x\). Give your answer correct to 6 decimal places.
  1. By writing \(\mathrm { f } ( x )\) as \(\sin ^ { - 1 } ( x ) \times 1\), determine the value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x\). Give your answer in exact form.