OCR Further Pure Core 2 (Further Pure Core 2) 2020 November

Question 1
View details
1 In this question you must show detailed reasoning.
Solve the equation \(4 z ^ { 2 } - 20 z + 169 = 0\). Give your answers in modulus-argument form.
Question 2
View details
2 In this question you must show detailed reasoning.
The roots of the equation \(3 x ^ { 3 } - 2 x ^ { 2 } - 5 x - 4 = 0\) are \(\alpha , \beta\) and \(\gamma\).
  1. Find a cubic equation with integer coefficients whose roots are \(\alpha ^ { 2 } , \beta ^ { 2 }\) and \(\gamma ^ { 2 }\).
  2. Find the exact value of \(\frac { \alpha ^ { 2 } \beta ^ { 2 } + \beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 } } { \alpha \beta \gamma }\).
Question 3
View details
3 In this question you must show detailed reasoning.
  1. Use partial fractions to show that \(\sum _ { r = 5 } ^ { n } \frac { 3 } { r ^ { 2 } + r - 2 } = \frac { 37 } { 60 } - \frac { 1 } { n } - \frac { 1 } { n + 1 } - \frac { 1 } { n + 2 }\).
  2. Write down the value of \(\lim _ { n \rightarrow \infty } \left( \sum _ { r = 5 } ^ { n } \frac { 3 } { r ^ { 2 } + r - 2 } \right)\).
Question 4
View details
4 The equations of two intersecting lines \(l _ { 1 }\) and \(l _ { 2 }\) are
\(l _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 1
0
a \end{array} \right) + \lambda \left( \begin{array} { r } 2
1
- 3 \end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { r } 7
9
- 2 \end{array} \right) + \mu \left( \begin{array} { r } - 1
1
2 \end{array} \right)\)
where \(a\) is a constant.
The equation of the plane \(\Pi\) is
r. \(\left( \begin{array} { l } 1
5
3 \end{array} \right) = - 14\).
\(l _ { 1 }\) and \(\Pi\) intersect at \(Q\).
\(l _ { 2 }\) and \(\Pi\) intersect at \(R\).
  1. Verify that the coordinates of \(R\) are (13, 3, -14).
  2. Determine the exact value of the length of \(Q R\).
Question 5
View details
5 A capacitor is an electrical component which stores charge. The value of the charge stored by the capacitor, in suitable units, is denoted by \(Q\). The capacitor is placed in an electrical circuit. At any time \(t\) seconds, where \(t \geqslant 0 , Q\) can be modelled by the differential equation \(\frac { d ^ { 2 } Q } { d t ^ { 2 } } - 2 \frac { d Q } { d t } - 15 Q = 0\). Initially the charge is 100 units and it is given that \(Q\) tends to a finite limit as \(t\) tends to infinity.
  1. Determine the charge on the capacitor when \(t = 0.5\).
  2. Determine the finite limit of \(Q\) as \(t\) tends to infinity.
Question 6
View details
6 The equation of a curve in polar coordinates is \(r = \ln ( 1 + \sin \theta )\) for \(\alpha \leqslant \theta \leqslant \beta\) where \(\alpha\) and \(\beta\) are non-negative angles. The curve consists of a single closed loop through the pole.
  1. By solving the equation \(r = 0\), determine the smallest possible values of \(\alpha\) and \(\beta\).
  2. Find the area enclosed by the curve, giving your answer to 4 significant figures.
  3. Hence, by considering the value of \(r\) at \(\theta = \frac { \alpha + \beta } { 2 }\), show that the loop is not circular.
Question 7
View details
7 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r } 0.6 & 2.4
- 0.8 & 1.8 \end{array} \right)\).
  1. Find \(\operatorname { det } \mathbf { A }\). The matrix A represents a stretch parallel to one of the coordinate axes followed by a rotation about the origin.
  2. By considering the determinants of these transformations, determine the scale factor of the stretch.
  3. Explain whether the stretch is parallel to the \(x\)-axis or the \(y\)-axis, justifying your answer.
  4. Find the angle of rotation.
Question 8
View details
8 In this question you must show detailed reasoning. The complex number \(- 4 + i \sqrt { 48 }\) is denoted by \(z\).
  1. Determine the cube roots of \(z\), giving the roots in exponential form. The points which represent the cube roots of \(z\) are denoted by \(A , B\) and \(C\) and these form a triangle in an Argand diagram.
  2. Write down the angles that any lines of symmetry of triangle \(A B C\) make with the positive real axis, justifying your answer.
Question 9
View details
9 Two thin poles, \(O A\) and \(B C\), are fixed vertically on horizontal ground. A chain is fixed at \(A\) and \(C\) such that it touches the ground at point \(D\) as shown in the diagram. On a coordinate system the coordinates of \(A\), \(B\) and \(D\) are \(( 0,3 ) , ( 5,0 )\) and \(( 2,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{c07ba83a-75fa-42dc-9bfd-6fc2f9226a23-5_805_1554_452_258} It is required to find the height of pole \(B C\) by modelling the shape of the curve that the chain forms.
Jofra models the curve using the equation \(\mathrm { y } = \mathrm { k } \cosh ( \mathrm { ax } - \mathrm { b } ) - 1\) where \(k , a\) and \(b\) are positive constants.
  1. Determine the value of \(k\).
  2. Find the exact value of \(a\) and the exact value of \(b\), giving your answers in logarithmic form. Holly models the curve using the equation \(y = \frac { 3 } { 4 } x ^ { 2 } - 3 x + 3\).
  3. Write down the coordinates of the point, \(( u , v )\) where \(u\) and \(v\) are both non-zero, at which the two models will agree.
  4. Show that Jofra's model and Holly's model disagree in their predictions of the height of pole \(B C\) by 3.32 m to 3 significant figures.
Question 10
View details
10 Let \(\mathrm { f } ( x ) = \sin ^ { - 1 } ( x )\).
    1. Determine \(\mathrm { f } ^ { \prime \prime } ( x )\).
    2. Determine the first two non-zero terms of the Maclaurin expansion for \(\mathrm { f } ( x )\).
    3. By considering the first two non-zero terms of the Maclaurin expansion for \(\mathrm { f } ( x )\), find an approximation to \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x\). Give your answer correct to 6 decimal places.
  1. By writing \(\mathrm { f } ( x )\) as \(\sin ^ { - 1 } ( x ) \times 1\), determine the value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x\). Give your answer in exact form.