OCR Further Pure Core 2 2020 November — Question 9

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2020
SessionNovember
TopicHyperbolic functions

9 Two thin poles, \(O A\) and \(B C\), are fixed vertically on horizontal ground. A chain is fixed at \(A\) and \(C\) such that it touches the ground at point \(D\) as shown in the diagram. On a coordinate system the coordinates of \(A\), \(B\) and \(D\) are \(( 0,3 ) , ( 5,0 )\) and \(( 2,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{c07ba83a-75fa-42dc-9bfd-6fc2f9226a23-5_805_1554_452_258} It is required to find the height of pole \(B C\) by modelling the shape of the curve that the chain forms.
Jofra models the curve using the equation \(\mathrm { y } = \mathrm { k } \cosh ( \mathrm { ax } - \mathrm { b } ) - 1\) where \(k , a\) and \(b\) are positive constants.
  1. Determine the value of \(k\).
  2. Find the exact value of \(a\) and the exact value of \(b\), giving your answers in logarithmic form. Holly models the curve using the equation \(y = \frac { 3 } { 4 } x ^ { 2 } - 3 x + 3\).
  3. Write down the coordinates of the point, \(( u , v )\) where \(u\) and \(v\) are both non-zero, at which the two models will agree.
  4. Show that Jofra's model and Holly's model disagree in their predictions of the height of pole \(B C\) by 3.32 m to 3 significant figures.