A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q11
AQA Further Paper 1 Specimen — Question 11
6 marks
Exam Board
AQA
Module
Further Paper 1 (Further Paper 1)
Session
Specimen
Marks
6
Topic
Hyperbolic functions
11
Prove that \(\frac { \sinh \theta } { 1 + \cosh \theta } + \frac { 1 + \cosh \theta } { \sinh \theta } \equiv 2 \operatorname { coth } \theta\) Explicitly state any hyperbolic identities that you use within your proof.
[0pt] [4 marks] LL
LL
LL
LL
LL
LL
LL
L
11
Solve \(\frac { \sinh \theta } { 1 + \cosh \theta } + \frac { 1 + \cosh \theta } { \sinh \theta } = 4\) giving your answer in an exact form.
[0pt] [2 marks]
This paper
(13 questions)
View full paper
Q1
Q3
2
Q5
4
Q6
7
Q7
5
Q8
1
Q9
10
Q10
9
Q11
6
Q12
3
Q13
5
Q14
12
Q15
11