AQA Further Paper 1 Specimen — Question 5 4 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
SessionSpecimen
Marks4
TopicHyperbolic functions

5
- 1
3 \end{array} \right] \quad \left[ \begin{array} { l } 2
1
1 \end{array} \right]$$ 2 Use the definitions of \(\cosh x\) and \(\sinh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that \(\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1\)
[0pt] [2 marks]
3
  1. Given that $$\frac { 2 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } \equiv \frac { A } { ( r + 1 ) ( r + 2 ) } + \frac { B } { ( r + 2 ) ( r + 3 ) }$$ find the values of the integers \(A\) and \(B\)
    3
  2. Use the method of differences to show clearly that $$\sum _ { r = 9 } ^ { 97 } \frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } = \frac { 89 } { 19800 }$$ 4 A student states that \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \frac { \cos x + \sin x } { \cos x - \sin x } \mathrm {~d} x\) is not an improper integral because \(\frac { \cos x + \sin x } { \cos x - \sin x }\) is defined at both \(x = 0\) and \(x = \frac { \pi } { 2 }\) Assess the validity of the student's argument.
    [0pt] [2 marks]
    \(5 \quad \mathrm { p } ( z ) = z ^ { 4 } + 3 z ^ { 2 } + a z + b , a \in \mathbb { R } , b \in \mathbb { R }\)
    \(2 - 3 \mathrm { i }\) is a root of the equation \(\mathrm { p } ( \mathrm { z } ) = 0\) 5
  3. Express \(\mathrm { p } ( z )\) as a product of quadratic factors with real coefficients.
    5
  4. Solve the equation \(\mathrm { p } ( z ) = 0\).