AQA Further Paper 1 Specimen — Question 10 9 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
SessionSpecimen
Marks9
TopicHyperbolic functions

10 The curve, \(C\), has equation \(y = \frac { x } { \cosh x }\)
10
  1. Show that the \(x\)-coordinates of any stationary points of \(C\) satisfy the equation \(\tanh x = \frac { 1 } { x }\)
    [0pt] [3 marks] 10
    1. Sketch the graphs of \(y = \tanh x\) and \(y = \frac { 1 } { x }\) on the axes below.
      [0pt] [2 marks]
      \includegraphics[max width=\textwidth, alt={}, center]{a155b39a-6835-4d62-a481-41ef822bbd5f-14_1151_1226_1461_358} 10
  2. (ii) Hence determine the number of stationary points of the curve \(C\). 10
  3. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y = 0\) at each of the stationary points of the curve \(C\).
    [0pt] [4 marks]