OCR MEI Paper 1 Specimen — Question 12

Exam BoardOCR MEI
ModulePaper 1 (Paper 1)
SessionSpecimen
TopicNon-constant acceleration

12 A model boat has velocity \(\mathbf { v } = ( ( 2 t - 2 ) \mathbf { i } + ( 2 t + 2 ) \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) for \(t \geq 0\), where \(t\) is the time in seconds. \(\mathbf { i }\) is the unit vector east and \(\mathbf { j }\) is the unit vector north.
When \(t = 3\), the position vector of the boat is \(( 3 \mathbf { i } + 14 \mathbf { j } ) \mathrm { m }\).
  1. Show that the boat is never instantaneously at rest.
  2. Determine any times at which the boat is moving directly northwards.
  3. Determine any times at which the boat is north-east of the origin.