- (a) Given that \(\theta\) is small, use the small angle approximation for \(\cos \theta\) to show that
$$1 + 4 \cos \theta + 3 \cos ^ { 2 } \theta \approx 8 - 5 \theta ^ { 2 }$$
Adele uses \(\theta = 5 ^ { \circ }\) to test the approximation in part (a).
Adele's working is shown below.
Using my calculator, \(1 + 4 \cos \left( 5 ^ { \circ } \right) + 3 \cos ^ { 2 } \left( 5 ^ { \circ } \right) = 7.962\), to 3 decimal places.
Using the approximation \(8 - 5 \theta ^ { 2 }\) gives \(8 - 5 ( 5 ) ^ { 2 } = - 117\)
Therefore, \(1 + 4 \cos \theta + 3 \cos ^ { 2 } \theta \approx 8 - 5 \theta ^ { 2 }\) is not true for \(\theta = 5 ^ { \circ }\)
(b) (i) Identify the mistake made by Adele in her working.
(ii) Show that \(8 - 5 \theta ^ { 2 }\) can be used to give a good approximation to \(1 + 4 \cos \theta + 3 \cos ^ { 2 } \theta\) for an angle of size \(5 ^ { \circ }\)
(2)