- In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
- Prove that
$$\frac { 1 } { \operatorname { cosec } \theta - 1 } + \frac { 1 } { \operatorname { cosec } \theta + 1 } \equiv 2 \tan \theta \sec \theta \quad \theta \neq ( 90 n ) ^ { \circ } , n \in \mathbb { Z }$$
- Hence solve, for \(0 < x < 90 ^ { \circ }\), the equation
$$\frac { 1 } { \operatorname { cosec } 2 x - 1 } + \frac { 1 } { \operatorname { cosec } 2 x + 1 } = \cot 2 x \sec 2 x$$
Give each answer, in degrees, to one decimal place.