Edexcel Paper 2 2024 June — Question 8

Exam BoardEdexcel
ModulePaper 2 (Paper 2)
Year2024
SessionJune
TopicReciprocal Trig & Identities

  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Prove that $$\frac { 1 } { \operatorname { cosec } \theta - 1 } + \frac { 1 } { \operatorname { cosec } \theta + 1 } \equiv 2 \tan \theta \sec \theta \quad \theta \neq ( 90 n ) ^ { \circ } , n \in \mathbb { Z }$$
  2. Hence solve, for \(0 < x < 90 ^ { \circ }\), the equation $$\frac { 1 } { \operatorname { cosec } 2 x - 1 } + \frac { 1 } { \operatorname { cosec } 2 x + 1 } = \cot 2 x \sec 2 x$$ Give each answer, in degrees, to one decimal place.