CAIE P3 2018 November — Question 8

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2018
SessionNovember
TopicComplex numbers 2

8
  1. Showing all necessary working, express the complex number \(\frac { 2 + 3 \mathrm { i } } { 1 - 2 \mathrm { i } }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the values of \(r\) and \(\theta\) correct to 3 significant figures.
  2. On an Argand diagram sketch the locus of points representing complex numbers \(z\) satisfying the equation \(| z - 3 + 2 i | = 1\). Find the least value of \(| z |\) for points on this locus, giving your answer in an exact form.