CAIE P3 (Pure Mathematics 3) 2018 November

Question 1 4 marks
View details
1 Find the set of values of \(x\) satisfying the inequality \(2 | 2 x - a | < | x + 3 a |\), where \(a\) is a positive constant. [4]
Question 2
View details
2 Showing all necessary working, solve the equation \(\frac { 2 \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } = 4\), giving your answer correct to 2 decimal places.
Question 3
View details
3
  1. By sketching a suitable pair of graphs, show that the equation \(x ^ { 3 } = 3 - x\) has exactly one real root.
  2. Show that if a sequence of real values given by the iterative formula $$x _ { n + 1 } = \frac { 2 x _ { n } ^ { 3 } + 3 } { 3 x _ { n } ^ { 2 } + 1 }$$ converges, then it converges to the root of the equation in part (i).
  3. Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
Question 4
View details
4 The parametric equations of a curve are $$x = 2 \sin \theta + \sin 2 \theta , \quad y = 2 \cos \theta + \cos 2 \theta$$ where \(0 < \theta < \pi\).
  1. Obtain an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Hence find the exact coordinates of the point on the curve at which the tangent is parallel to the \(y\)-axis.
Question 5
View details
5 The coordinates \(( x , y )\) of a general point on a curve satisfy the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \left( 2 - x ^ { 2 } \right) y$$ The curve passes through the point \(( 1,1 )\). Find the equation of the curve, obtaining an expression for \(y\) in terms of \(x\).
Question 6
View details
6
  1. Show that the equation ( \(\sqrt { } 2\) ) \(\operatorname { cosec } x + \cot x = \sqrt { } 3\) can be expressed in the form \(R \sin ( x - \alpha ) = \sqrt { } 2\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence solve the equation \(( \sqrt { } 2 ) \operatorname { cosec } x + \cot x = \sqrt { } 3\), for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
Question 7 4 marks
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{c861e691-66da-4269-9057-4a343be9835e-12_357_565_260_790} The diagram shows the curve \(y = 5 \sin ^ { 2 } x \cos ^ { 3 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
  2. Using the substitution \(u = \sin x\) and showing all necessary working, find the exact area of \(R\). [4]
Question 8
View details
8
  1. Showing all necessary working, express the complex number \(\frac { 2 + 3 \mathrm { i } } { 1 - 2 \mathrm { i } }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the values of \(r\) and \(\theta\) correct to 3 significant figures.
  2. On an Argand diagram sketch the locus of points representing complex numbers \(z\) satisfying the equation \(| z - 3 + 2 i | = 1\). Find the least value of \(| z |\) for points on this locus, giving your answer in an exact form.
Question 9
View details
9 Let \(\mathrm { f } ( x ) = \frac { 6 x ^ { 2 } + 8 x + 9 } { ( 2 - x ) ( 3 + 2 x ) ^ { 2 } }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence, showing all necessary working, show that \(\int _ { - 1 } ^ { 0 } \mathrm { f } ( x ) \mathrm { d } x = 1 + \frac { 1 } { 2 } \ln \left( \frac { 3 } { 4 } \right)\).
Question 10
View details
10 The planes \(m\) and \(n\) have equations \(3 x + y - 2 z = 10\) and \(x - 2 y + 2 z = 5\) respectively. The line \(l\) has equation \(\mathbf { r } = 4 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\).
  1. Show that \(l\) is parallel to \(m\).
  2. Calculate the acute angle between the planes \(m\) and \(n\).
  3. A point \(P\) lies on the line \(l\). The perpendicular distance of \(P\) from the plane \(n\) is equal to 2 . Find the position vectors of the two possible positions of \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.