Use the substitution \(u = \mathrm { e } ^ { x } - 2\) to show that
$$\int \frac { 7 \mathrm { e } ^ { x } - 8 } { \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } } \mathrm {~d} x = \int \frac { 7 u + 6 } { u ^ { 2 } ( u + 2 ) } \mathrm { d } u$$
Hence show that
$$\int _ { \ln 4 } ^ { \ln 6 } \frac { 7 \mathrm { e } ^ { x } - 8 } { \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } } \mathrm {~d} x = a + \ln b$$
where \(a\) and \(b\) are rational numbers to be determined.
\section*{END OF QUESTION PAPER}