10
\includegraphics[max width=\textwidth, alt={}, center]{9473b8f7-616a-485e-963b-696c6640ae6b-07_805_775_251_242}
The diagram shows part of the curve \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { x } } { 4 x ^ { 2 } - 1 } + 2\). The equation \(\mathrm { f } ( x ) = 0\) has a positive root \(\alpha\) close to \(x = 0.3\).
- Explain why using the sign change method with \(x = 0\) and \(x = 1\) will fail to locate \(\alpha\).
- Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as \(x = \frac { 1 } { 4 } \sqrt { \left( 4 - 2 \mathrm { e } ^ { x } \right) }\).
- Use the iterative formula \(x _ { n + 1 } = \frac { 1 } { 4 } \sqrt { \left( 4 - 2 \mathrm { e } ^ { x _ { n } } \right) }\) with a starting value of \(x _ { 1 } = 0.3\) to find the value of \(\alpha\) correct to \(\mathbf { 4 }\) significant figures, showing the result of each iteration.
- An alternative iterative formula is \(x _ { n + 1 } = \mathrm { F } \left( x _ { n } \right)\), where \(\mathrm { F } \left( x _ { n } \right) = \ln \left( 2 - 8 x _ { n } ^ { 2 } \right)\).
By considering \(\mathrm { F } ^ { \prime } ( 0.3 )\) explain why this iterative formula will not find \(\alpha\).