A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Integration by Substitution
Q10
CAIE P3 2011 November — Question 10
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2011
Session
November
Topic
Integration by Substitution
10
Use the substitution \(u = \tan x\) to show that, for \(n \neq - 1\), $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \tan ^ { n + 2 } x + \tan ^ { n } x \right) \mathrm { d } x = \frac { 1 } { n + 1 }$$
Hence find the exact value of
(a) \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \sec ^ { 4 } x - \sec ^ { 2 } x \right) \mathrm { d } x\),
(b) \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \tan ^ { 9 } x + 5 \tan ^ { 7 } x + 5 \tan ^ { 5 } x + \tan ^ { 3 } x \right) \mathrm { d } x\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10