CAIE P3 2011 November — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2011
SessionNovember
TopicIntegration by Substitution

10
  1. Use the substitution \(u = \tan x\) to show that, for \(n \neq - 1\), $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \tan ^ { n + 2 } x + \tan ^ { n } x \right) \mathrm { d } x = \frac { 1 } { n + 1 }$$
  2. Hence find the exact value of
    (a) \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \sec ^ { 4 } x - \sec ^ { 2 } x \right) \mathrm { d } x\),
    (b) \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \tan ^ { 9 } x + 5 \tan ^ { 7 } x + 5 \tan ^ { 5 } x + \tan ^ { 3 } x \right) \mathrm { d } x\).