CAIE P3 2011 November — Question 8

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2011
SessionNovember
TopicParametric equations

8
\includegraphics[max width=\textwidth, alt={}, center]{6025cf1d-525e-4f12-9517-f20ef5fff2fa-3_698_1006_758_571} The diagram shows the curve with parametric equations $$x = \sin t + \cos t , \quad y = \sin ^ { 3 } t + \cos ^ { 3 } t$$ for \(\frac { 1 } { 4 } \pi < t < \frac { 5 } { 4 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 3 \sin t \cos t\).
  2. Find the gradient of the curve at the origin.
  3. Find the values of \(t\) for which the gradient of the curve is 1 , giving your answers correct to 2 significant figures.