AQA FP3 (Further Pure Mathematics 3) 2012 June

Question 1
View details
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { ( 2 x ) } + \sqrt { y }$$ and $$y ( 2 ) = 9$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.25\), to obtain an approximation to \(y ( 2.25 )\), giving your answer to two decimal places.
Question 2
View details
2
  1. Write down the expansion of \(\sin 2 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 5 }\).
  2. Show that, for some value of \(k\), $$\lim _ { x \rightarrow 0 } \left[ \frac { 2 x - \sin 2 x } { x ^ { 2 } \ln ( 1 + k x ) } \right] = 16$$ and state this value of \(k\).
Question 3
View details
3 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{c4bce668-61f1-4be0-97ee-c635df7e1fc6-2_380_735_1827_648} The polar equation of \(C\) is $$r = 2 \sqrt { 1 + \tan \theta } , \quad - \frac { \pi } { 4 } \leqslant \theta \leqslant \frac { \pi } { 4 }$$ Show that the area of the shaded region, bounded by the curve \(C\) and the initial line, is \(\frac { \pi } { 2 } - \ln 2\).
(4 marks)
Question 4
View details
4
  1. By using an integrating factor, find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 4 } { 2 x + 1 } y = 4 ( 2 x + 1 ) ^ { 5 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
  2. The gradient of a curve at any point \(( x , y )\) on the curve is given by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 4 ( 2 x + 1 ) ^ { 5 } - \frac { 4 } { 2 x + 1 } y$$ The point whose \(x\)-coordinate is zero is a stationary point of the curve. Using your answer to part (a), find the equation of the curve.
Question 5
View details
5
  1. Find \(\int x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\).
  2. Hence evaluate \(\int _ { 0 } ^ { \infty } x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\), showing the limiting process used.
Question 6
View details
6 It is given that \(y = \ln ( 1 + \sin x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \mathrm { e } ^ { - y }\).
  3. Express \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) in terms of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\mathrm { e } ^ { - y }\).
  4. Hence, by using Maclaurin's theorem, find the first four non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + \sin x )\).
Question 7
View details
7
  1. Show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$\text { into } \quad \begin{aligned} x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y & = 3 + 20 \sin ( \ln x )
    \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 6 y & = 3 + 20 \sin t \end{aligned}$$ (7 marks)
  2. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 6 y = 3 + 20 \sin t$$ (11 marks)
  3. Write down the general solution of the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y = 3 + 20 \sin ( \ln x )$$
Question 8
View details
8
  1. A curve has cartesian equation \(x y = 8\). Show that the polar equation of the curve is \(r ^ { 2 } = 16 \operatorname { cosec } 2 \theta\).
  2. The diagram shows a sketch of the curve, \(C\), whose polar equation is $$r ^ { 2 } = 16 \operatorname { cosec } 2 \theta , \quad 0 < \theta < \frac { \pi } { 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{c4bce668-61f1-4be0-97ee-c635df7e1fc6-4_364_567_1635_726}
    1. Find the polar coordinates of the point \(N\) which lies on the curve \(C\) and is closest to the pole \(O\).
    2. The circle whose polar equation is \(r = 4 \sqrt { 2 }\) intersects the curve \(C\) at the points \(P\) and \(Q\). Find, in an exact form, the polar coordinates of \(P\) and \(Q\).
    3. The obtuse angle \(P N Q\) is \(\alpha\) radians. Find the value of \(\alpha\), giving your answer to three significant figures.
      (5 marks)