AQA FP3 (Further Pure Mathematics 3) 2011 June

Question 1
View details
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + \ln ( 1 + y )$$ and $$y ( 2 ) = 1$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 2.2 )\), giving your answer to four decimal places.
Question 2
View details
2
  1. Find the values of the constants \(p\) and \(q\) for which \(p + q x \mathrm { e } ^ { - 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 y = 4 - 9 \mathrm { e } ^ { - 2 x }$$
  2. Hence find the general solution of this differential equation.
  3. Hence express \(y\) in terms of \(x\), given that \(y = 4\) when \(x = 0\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } \rightarrow 0\) as \(x \rightarrow \infty\).
Question 3
View details
3
  1. Find \(\int x ^ { 2 } \ln x \mathrm {~d} x\).
  2. Explain why \(\int _ { 0 } ^ { \mathrm { e } } x ^ { 2 } \ln x \mathrm {~d} x\) is an improper integral.
  3. Evaluate \(\int _ { 0 } ^ { \mathrm { e } } x ^ { 2 } \ln x \mathrm {~d} x\), showing the limiting process used.
Question 4
View details
4 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + ( \cot x ) y = \sin 2 x , \quad 0 < x < \frac { \pi } { 2 }$$ given that \(y = \frac { 1 } { 2 }\) when \(x = \frac { \pi } { 6 }\).
(10 marks)
Question 5
View details
5
  1. Given that \(y = \ln ( 1 + 2 \tan x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    (You may leave your expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) unsimplified.)
  2. Hence, using Maclaurin's theorem, find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + 2 \tan x )\).
    (2 marks)
  3. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln ( 1 + 2 \tan x ) } { \ln ( 1 - x ) } \right]$$ (4 marks)
Question 6
View details
6 A differential equation is given by $$\left( x ^ { 3 } + 1 \right) \frac { d ^ { 2 } y } { d x ^ { 2 } } - 3 x ^ { 2 } \frac { d y } { d x } = 2 - 4 x ^ { 3 }$$
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 x$$ transforms this differential equation into $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } u } { \mathrm {~d} x } = 3 x ^ { 2 } u$$ (4 marks)
  2. Hence find the general solution of the differential equation $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2 - 4 x ^ { 3 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    \(7 \quad\) The curve \(C _ { 1 }\) is defined by \(r = 2 \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\). The curve \(C _ { 2 }\) is defined by \(r = \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\).
  3. Find a cartesian equation of \(C _ { 1 }\).
    1. Prove that the curves \(C _ { 1 }\) and \(C _ { 2 }\) meet at the pole \(O\) and at one other point, \(P\), in the given domain. State the polar coordinates of \(P\).
    2. The point \(A\) is the point on the curve \(C _ { 1 }\) at which \(\theta = \frac { \pi } { 4 }\). The point \(B\) is the point on the curve \(C _ { 2 }\) at which \(\theta = \frac { \pi } { 4 }\). Determine which of the points \(A\) or \(B\) is further away from the pole \(O\), justifying your answer.
    3. Show that the area of the region bounded by the arc \(O P\) of \(C _ { 1 }\) and the arc \(O P\) of \(C _ { 2 }\) is \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are rational numbers.