8 Two uniform smooth spheres, \(A\) and \(B\), have the same radius. The mass of \(A\) is 2 kg and the mass of \(B\) is \(m \mathrm {~kg}\). Sphere \(A\) is travelling in a straight line on a smooth horizontal surface, with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), when it collides directly with sphere \(B\), which is at rest. As a result of the collision, sphere \(A\) continues in the same direction with a speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Find the greatest possible value of \(m\).
It is given that \(m = 1\).
- Find the coefficient of restitution between \(A\) and \(B\).
On another occasion \(A\) and \(B\) are travelling towards each other, each with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), when they collide directly.
- Find the kinetic energy lost due to the collision.