OCR M2 2006 June — Question 5

Exam BoardOCR
ModuleM2 (Mechanics 2)
Year2006
SessionJune
TopicCentre of Mass 1

5
\includegraphics[max width=\textwidth, alt={}, center]{d6d87705-be4b-407d-b699-69fb441d88a7-3_657_549_1219_799} A uniform lamina \(A B C D E\) consists of a square and an isosceles triangle. The square has sides of 18 cm and \(B C = C D = 15 \mathrm {~cm}\) (see diagram).
  1. Taking \(x\) - and \(y\)-axes along \(A E\) and \(A B\) respectively, find the coordinates of the centre of mass of the lamina.
  2. The lamina is freely suspended from \(B\). Calculate the angle that \(B D\) makes with the vertical. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d6d87705-be4b-407d-b699-69fb441d88a7-4_441_1355_265_394} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} A light inextensible string of length 1 m passes through a small smooth hole \(A\) in a fixed smooth horizontal plane. One end of the string is attached to a particle \(P\), of mass 0.5 kg , which hangs in equilibrium below the plane. The other end of the string is attached to a particle \(Q\), of mass 0.3 kg , which rotates with constant angular speed in a circle of radius 0.2 m on the surface of the plane (see Fig. 1).