OCR M2 (Mechanics 2) 2006 June

Question 1
View details
1 A child of mass 35 kg runs up a flight of stairs in 10 seconds. The vertical distance climbed is 4 m . Assuming that the child's speed is constant, calculate the power output.
Question 2
View details
2 A small sphere of mass 0.3 kg is dropped from rest at a height of 2 m above horizontal ground. It falls vertically, hits the ground and rebounds vertically upwards, coming to instantaneous rest at a height of 1.4 m above the ground. Ignoring air resistance, calculate the magnitude of the impulse which the ground exerts on the sphere when it rebounds.
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{d6d87705-be4b-407d-b699-69fb441d88a7-2_710_572_721_788} A uniform solid hemisphere of weight 12 N and radius 6 cm is suspended by two vertical strings. One string is attached to the point \(O\), the centre of the plane face, and the other string is attached to the point \(A\) on the rim of the plane face. The hemisphere hangs in equilibrium and \(O A\) makes an angle of \(60 ^ { \circ }\) with the vertical (see diagram).
  1. Find the horizontal distance from the centre of mass of the hemisphere to the vertical through \(O\).
  2. Calculate the tensions in the strings.
Question 4
View details
4 A car of mass 900 kg is travelling at a constant speed of \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) on a level road. The total resistance to motion is 450 N .
  1. Calculate the power output of the car's engine. A roof box of mass 50 kg is mounted on the roof of the car. The total resistance to motion of the vehicle increases to 500 N .
  2. The car's engine continues to work at the same rate. Calculate the maximum speed of the car on the level road. The power output of the car's engine increases to 15000 W . The resistance to motion of the car, with roof box, remains 500 N .
  3. Calculate the instantaneous acceleration of the car on the level road when its speed is \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  4. The car climbs a hill which is at an angle of \(5 ^ { \circ }\) to the horizontal. Calculate the instantaneous retardation of the car when its speed is \(26 \mathrm {~ms} ^ { - 1 }\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{d6d87705-be4b-407d-b699-69fb441d88a7-3_657_549_1219_799} A uniform lamina \(A B C D E\) consists of a square and an isosceles triangle. The square has sides of 18 cm and \(B C = C D = 15 \mathrm {~cm}\) (see diagram).
  1. Taking \(x\) - and \(y\)-axes along \(A E\) and \(A B\) respectively, find the coordinates of the centre of mass of the lamina.
  2. The lamina is freely suspended from \(B\). Calculate the angle that \(B D\) makes with the vertical. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d6d87705-be4b-407d-b699-69fb441d88a7-4_441_1355_265_394} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} A light inextensible string of length 1 m passes through a small smooth hole \(A\) in a fixed smooth horizontal plane. One end of the string is attached to a particle \(P\), of mass 0.5 kg , which hangs in equilibrium below the plane. The other end of the string is attached to a particle \(Q\), of mass 0.3 kg , which rotates with constant angular speed in a circle of radius 0.2 m on the surface of the plane (see Fig. 1).
Question 6
View details
  1. Calculate the tension in the string and hence find the angular speed of \(Q\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d6d87705-be4b-407d-b699-69fb441d88a7-4_489_1358_1286_392} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} The particle \(Q\) on the plane is now fixed to a point 0.2 m from the hole at \(A\) and the particle \(P\) rotates in a horizontal circle of radius 0.2 m (see Fig. 2).
  2. Calculate the tension in the string.
  3. Calculate the speed of \(P\).
Question 7
View details
7 A small ball is projected at an angle of \(50 ^ { \circ }\) above the horizontal, from a point \(A\), which is 2 m above ground level. The highest point of the path of the ball is 15 m above the ground, which is horizontal. Air resistance may be ignored.
  1. Find the speed with which the ball is projected from \(A\). The ball hits a net at a point \(B\) when it has travelled a horizontal distance of 45 m .
  2. Find the height of \(B\) above the ground.
  3. Find the speed of the ball immediately before it hits the net.
Question 8
View details
8 Two uniform smooth spheres, \(A\) and \(B\), have the same radius. The mass of \(A\) is 2 kg and the mass of \(B\) is \(m \mathrm {~kg}\). Sphere \(A\) is travelling in a straight line on a smooth horizontal surface, with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), when it collides directly with sphere \(B\), which is at rest. As a result of the collision, sphere \(A\) continues in the same direction with a speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find the greatest possible value of \(m\). It is given that \(m = 1\).
  2. Find the coefficient of restitution between \(A\) and \(B\). On another occasion \(A\) and \(B\) are travelling towards each other, each with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), when they collide directly.
  3. Find the kinetic energy lost due to the collision.