The vector \(\mathbf { e }\) is an eigenvector of each of the \(n \times n\) matrices \(\mathbf { A }\) and \(\mathbf { B }\), with corresponding eigenvalues \(\lambda\) and \(\mu\) respectively. Prove that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with eigenvalue \(\lambda \mu\).
It is given that the matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { r r r }
3 & 2 & 2
- 2 & - 2 & - 2
1 & 2 & 2
\end{array} \right) ,$$
has eigenvectors \(\left( \begin{array} { r } 0
1
- 1 \end{array} \right)\) and \(\left( \begin{array} { r } 1
0
- 1 \end{array} \right)\). Find the corresponding eigenvalues.
Given that 2 is also an eigenvalue of \(\mathbf { A }\), find a corresponding eigenvector.
The matrix \(\mathbf { B }\), where
$$\mathbf { B } = \left( \begin{array} { r r r }
- 1 & 2 & 2
2 & 2 & 2
- 3 & - 6 & - 6
\end{array} \right) ,$$
has the same eigenvectors as \(\mathbf { A }\). Given that \(\mathbf { A B } = \mathbf { C }\), find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that
$$\mathbf { P } ^ { - 1 } \mathbf { C } ^ { 2 } \mathbf { P } = \mathbf { D }$$