CAIE FP2 2017 Specimen — Question 7

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2017
SessionSpecimen
TopicContinuous Probability Distributions and Random Variables
TypePower transformation (Y = X^n, n≥2)

7 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 21 } x ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 2 }\).
  1. Show that \(Y\) has probability density function given by $$g ( y ) = \begin{cases} \frac { 1 } { 42 } y ^ { \frac { 1 } { 2 } } & 1 \leqslant y \leqslant 16
    0 & \text { otherwise } \end{cases}$$
  2. Find the median value of \(Y\).
  3. Find the expected value of \(Y\).