Power transformation (Y = X^n, n≥2)

Questions asking to find the PDF or CDF of Y where Y = X^n for integer n ≥ 2 (commonly Y = X² or Y = X³), using the transformation formula with derivative dy/dx = nx^(n-1).

8 questions

OCR S3 Specimen Q5
5 The continuous random variable \(X\) has a triangular distribution with probability density function given by $$f ( x ) = \left\{ \begin{array} { l r } 1 + x & - 1 \leqslant x \leqslant 0
1 - x & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{array} \right.$$
  1. Show that, for \(0 \leqslant a \leqslant 1\), $$\mathrm { P } ( | X | \leqslant a ) = 2 a - a ^ { 2 } .$$ The random variable \(Y\) is given by \(Y = X ^ { 2 }\).
  2. Express \(\mathrm { P } ( Y \leqslant y )\) in terms of \(y\), for \(0 \leqslant y \leqslant 1\), and hence show that the probability density function of \(Y\) is given by $$g ( y ) = \frac { 1 } { \sqrt { } y } - 1 , \quad \text { for } 0 < y \leqslant 1 .$$
  3. Use the probability density function of \(Y\) to find \(\mathrm { E } ( Y )\), and show how the value of \(\mathrm { E } ( Y )\) may also be obtained directly using the probability density function of \(X\).
  4. Find \(\mathrm { E } ( \sqrt { } Y )\).
CAIE FP2 2013 June Q8
8 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 6 } x & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 3 }\). Show that \(Y\) has probability density function g given by $$g ( y ) = \begin{cases} \frac { 1 } { 18 } y ^ { - \frac { 1 } { 3 } } & 8 \leqslant y \leqslant 64
0 & \text { otherwise } \end{cases}$$ Find \(\mathrm { E } ( Y )\).
CAIE FP2 2017 June Q8
8 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 4 } ( x - 1 ) & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = ( X - 1 ) ^ { 3 }\).
  2. Find the probability density function of \(Y\).
  3. Find the median value of \(Y\).
CAIE FP2 2014 November Q10
10 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 2 } & 1 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 3 }\). Find the distribution function of \(Y\). Sketch the graph of the probability density function of \(Y\). Find the probability that \(Y\) lies between its median value and its mean value.
CAIE FP2 2015 November Q7
7 The continuous random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \begin{cases} \frac { 1 } { 21 } x ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 2 }\). Show that \(Y\) has probability density function given by $$\operatorname { g } ( y ) = \begin{cases} \frac { 1 } { 42 } y ^ { \frac { 1 } { 2 } } & 1 \leqslant y \leqslant 16
0 & \text { otherwise } \end{cases}$$ Find
  1. the median value of \(Y\),
  2. the expected value of \(Y\).
CAIE FP2 2016 November Q7
7 The random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 6 } x & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\). The random variable \(Y\) is defined by \(Y = X ^ { 3 }\). Find
  2. the probability density function of \(Y\),
  3. the value of \(k\) for which \(\mathrm { P } ( Y \geqslant k ) = \frac { 7 } { 12 }\).
CAIE FP2 2019 November Q10
10 The random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 30 } \left( \frac { 8 } { x ^ { 2 } } + 3 x ^ { 2 } - 14 \right) & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = X ^ { 2 }\).
  2. Find the probability density function of \(Y\).
  3. Find the value of \(y\) such that \(\mathrm { P } ( Y < y ) = 0.8\).
CAIE FP2 2017 Specimen Q7
7 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 21 } x ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 2 }\).
  1. Show that \(Y\) has probability density function given by $$g ( y ) = \begin{cases} \frac { 1 } { 42 } y ^ { \frac { 1 } { 2 } } & 1 \leqslant y \leqslant 16
    0 & \text { otherwise } \end{cases}$$
  2. Find the median value of \(Y\).
  3. Find the expected value of \(Y\).