9 The continuous random variable \(X\) has probability density function given by
$$\mathrm { f } ( x ) = \begin{cases} 0 & x < 2
a \mathrm { e } ^ { - ( x - 2 ) } & x \geqslant 2 \end{cases}$$
where \(a\) is a constant. Show that \(a = 1\).
Find the distribution function of \(X\) and hence find the median value of \(X\).
The random variable \(Y\) is defined by \(Y = \mathrm { e } ^ { X }\). Find
- the probability density function of \(Y\),
- \(\mathrm { P } ( Y > 10 )\).