CAIE FP2 (Further Pure Mathematics 2) 2015 June

Question 1
View details
1 Two uniform small smooth spheres, \(A\) and \(B\), of equal radii and masses 2 kg and 3 kg respectively, are at rest and not in contact on a smooth horizontal plane. Sphere \(A\) receives an impulse of magnitude 8 N s in the direction \(A B\). The coefficient of restitution between the spheres is \(e\). Find, in terms of \(e\), the speeds of \(A\) and \(B\) after \(A\) collides with \(B\). Given that the spheres move in opposite directions after the collision, show that \(e > \frac { 2 } { 3 }\).
Question 2 7 marks
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{833c338f-53c1-436e-a772-0cdaf17fa72d-2_547_811_625_667} A uniform sphere \(P\) of mass \(m\) is at rest on a smooth horizontal table. The sphere is projected along the table with speed \(u\) and strikes a smooth vertical barrier \(A\) at an acute angle \(\alpha\). It then strikes another smooth vertical barrier \(B\) which is at right angles to \(A\) (see diagram). The coefficient of restitution between \(P\) and each of the barriers is \(e\). Show that the final direction of motion of \(P\) makes an angle \(\frac { 1 } { 2 } \pi - \alpha\) with the barrier \(B\) and find the total loss in kinetic energy as a result of the two impacts. [7]
Question 3
View details
3 A particle moves on a straight line \(A O B\) in simple harmonic motion, where \(A B = 2 a \mathrm {~m}\). The centre of the motion is \(O\) and the particle is instantaneously at rest at \(A\) and \(B\). The point \(M\) is the mid-point of \(O B\). The particle passes through \(M\) moving towards \(O\) and next achieves its maximum speed one second later. Find the period of the motion. Find the distance of the particle from \(O\) when its speed is equal to one half of its maximum speed. At an instant 2.5 seconds after the particle passes through \(M\) moving towards \(O\), the distance of the particle from \(O\) is \(\sqrt { } 2 \mathrm {~m}\). Find, in metres, the amplitude of the motion.
Question 4 6 marks
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{833c338f-53c1-436e-a772-0cdaf17fa72d-3_559_1303_255_422} The diagram shows a central cross-section CDEF of a uniform solid cube of weight \(W\) and with edges of length \(2 a\). The cube rests on a rough horizontal plane. A thin uniform \(\operatorname { rod } A B\), of weight \(W\) and length \(6 a\), is hinged to the plane at \(A\). The rod rests in smooth contact with the cube at \(C\), with angle \(C A D\) equal to \(30 ^ { \circ }\). The rod is in the same vertical plane as \(C D E F\). The coefficient of friction between the plane and the cube is \(\mu\). Given that the system is in equilibrium, show that \(\mu \geqslant \frac { 3 } { 25 } \sqrt { } 3\). [6] Find the magnitude of the force acting on the \(\operatorname { rod }\) at \(A\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{833c338f-53c1-436e-a772-0cdaf17fa72d-3_316_949_1320_598} The end \(B\) of a uniform rod \(A B\), of mass \(3 M\) and length \(4 a\), is rigidly attached to a point on the circumference of a uniform disc. The disc has centre \(O\), mass \(2 M\) and radius \(a\), and \(A B O\) is a straight line. The disc and the rod are in the same vertical plane. A particle \(P\), of mass \(M\), is attached to the rod at a distance \(k a\) from \(A\), where \(k\) is a positive constant (see diagram). Show that the moment of inertia of this system, about a fixed horizontal axis \(l\) through \(A\) perpendicular to the plane of the disc, is \(\left( 67 + k ^ { 2 } \right) M a ^ { 2 }\). The system is free to rotate about \(l\) and performs small oscillations of period \(4 \pi \sqrt { } \left( \frac { a } { g } \right)\). Find the possible values of \(k\).
Question 6
View details
6 The reliability of the broadband connection received from two suppliers, \(A\) and \(B\), is classified as good, fair or poor by a random sample of householders. The information collected is summarised in the following table.
Reliability
\cline { 3 - 5 } \multicolumn{2}{|c|}{}GoodFairPoor
\multirow{2}{*}{Supplier}\(A\)656333
\cline { 2 - 5 }\(B\)514444
Test, at the 5\% significance level, whether reliability is independent of supplier.
Question 7
View details
7 For a random sample of 10 observations of pairs of values \(( x , y )\), the equation of the regression line of \(y\) on \(x\) is \(y = 3.25 x - 4.27\). The sum of the ten \(x\) values is 15.6 and the product moment correlation coefficient for the sample is 0.56 . Find the equation of the regression line of \(x\) on \(y\). Test, at the \(5 \%\) significance level, whether there is evidence of non-zero correlation between the variables.
Question 8
View details
8 A large number of long jumpers are competing in a national long jump competition. The distances, in metres, jumped by a random sample of 7 competitors are as follows. $$\begin{array} { l l l l l l l } 6.25 & 7.01 & 5.74 & 6.89 & 7.24 & 5.64 & 6.52 \end{array}$$ Assuming that distances are normally distributed, test, at the \(5 \%\) significance level, whether the mean distance jumped by long jumpers in this competition is greater than 6.2 metres. The distances jumped by another random sample of 8 long jumpers in this competition are recorded. Using the data from this sample of 8 long jumpers, a \(95 \%\) confidence interval for the population mean, \(\mu\) metres, is calculated as \(5.89 < \mu < 6.75\). Find the unbiased estimates for the population mean and population variance used in this calculation.
Question 9
View details
9 The continuous random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \begin{cases} 0 & x < 2
a \mathrm { e } ^ { - ( x - 2 ) } & x \geqslant 2 \end{cases}$$ where \(a\) is a constant. Show that \(a = 1\). Find the distribution function of \(X\) and hence find the median value of \(X\). The random variable \(Y\) is defined by \(Y = \mathrm { e } ^ { X }\). Find
  1. the probability density function of \(Y\),
  2. \(\mathrm { P } ( Y > 10 )\).
Question 10 EITHER
View details
\includegraphics[max width=\textwidth, alt={}]{833c338f-53c1-436e-a772-0cdaf17fa72d-5_449_621_431_762}
One end of a light inextensible string of length \(\frac { 3 } { 2 } a\) is attached to a fixed point \(O\) on a horizontal surface. The other end of the string is attached to a particle \(P\) of mass \(m\). The string passes over a small fixed smooth peg \(A\) which is at a distance \(a\) vertically above \(O\). The system is in equilibrium with \(P\) hanging vertically below \(A\) and the string taut. The particle is projected horizontally with speed \(u\) (see diagram). When \(P\) is at the same horizontal level as \(A\), the tension in the string is \(T\). Show that \(T = \frac { 2 m } { a } \left( u ^ { 2 } - a g \right)\). The ratio of the tensions in the string immediately before, and immediately after, the string loses contact with the peg is \(5 : 1\).
  1. Show that \(u ^ { 2 } = 5 a g\).
  2. Find, in terms of \(m\) and \(g\), the tension in the string when \(P\) is next at the same horizontal level as \(A\).
Question 10 OR
View details
The times taken, in hours, by cyclists from two different clubs, \(A\) and \(B\), to complete a 50 km time trial are being compared. The times taken by a cyclist from club \(A\) and by a cyclist from club \(B\) are denoted by \(t _ { A }\) and \(t _ { B }\) respectively. A random sample of 50 cyclists from \(A\) and a random sample of 60 cyclists from \(B\) give the following summarised data. $$\Sigma t _ { A } = 102.0 \quad \Sigma t _ { A } ^ { 2 } = 215.18 \quad \Sigma t _ { B } = 129.0 \quad \Sigma t _ { B } ^ { 2 } = 282.3$$ Using a 5\% significance level, test whether, on average, cyclists from club \(A\) take less time to complete the time trial than cyclists from club \(B\). A test at the \(\alpha \%\) significance level shows that there is evidence that the population mean time for cyclists from club \(B\) exceeds the population mean time for cyclists from club \(A\) by more than 0.05 hours. Find the set of possible values of \(\alpha\).