5
\includegraphics[max width=\textwidth, alt={}, center]{833c338f-53c1-436e-a772-0cdaf17fa72d-3_316_949_1320_598}
The end \(B\) of a uniform rod \(A B\), of mass \(3 M\) and length \(4 a\), is rigidly attached to a point on the circumference of a uniform disc. The disc has centre \(O\), mass \(2 M\) and radius \(a\), and \(A B O\) is a straight line. The disc and the rod are in the same vertical plane. A particle \(P\), of mass \(M\), is attached to the rod at a distance \(k a\) from \(A\), where \(k\) is a positive constant (see diagram). Show that the moment of inertia of this system, about a fixed horizontal axis \(l\) through \(A\) perpendicular to the plane of the disc, is \(\left( 67 + k ^ { 2 } \right) M a ^ { 2 }\).
The system is free to rotate about \(l\) and performs small oscillations of period \(4 \pi \sqrt { } \left( \frac { a } { g } \right)\). Find the possible values of \(k\).