CAIE FP2 2015 June — Question 3

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2015
SessionJune
TopicSimple Harmonic Motion

3 A particle moves on a straight line \(A O B\) in simple harmonic motion, where \(A B = 2 a \mathrm {~m}\). The centre of the motion is \(O\) and the particle is instantaneously at rest at \(A\) and \(B\). The point \(M\) is the mid-point of \(O B\). The particle passes through \(M\) moving towards \(O\) and next achieves its maximum speed one second later. Find the period of the motion. Find the distance of the particle from \(O\) when its speed is equal to one half of its maximum speed. At an instant 2.5 seconds after the particle passes through \(M\) moving towards \(O\), the distance of the particle from \(O\) is \(\sqrt { } 2 \mathrm {~m}\). Find, in metres, the amplitude of the motion.