CAIE FP2 (Further Pure Mathematics 2) 2009 June

Question 1
View details
1 A line \(O P\) of fixed length \(l\) rotates in a plane about the fixed point \(O\). At time \(t = 0\), the line is at the position \(O A\). At time \(t\), angle \(A O P = \theta\) radians and \(\frac { \mathrm { d } \theta } { \mathrm { d } t } = \sin \theta\). Show that, for all \(t\), the magnitude of the acceleration of \(P\) is equal to the magnitude of its velocity.
Question 2
View details
2 The tip of a sewing-machine needle oscillates vertically in simple harmonic motion through a distance of 2.10 cm . It takes 2.25 s to perform 100 complete oscillations. Find, in \(\mathrm { m } \mathrm { s } ^ { - 1 }\), the maximum speed of the tip of the needle. Show that the speed of the tip when it is at a distance of 0.5 cm from a position of instantaneous rest is \(2.50 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), correct to 3 significant figures.
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-2_513_711_890_717} A uniform lamina of mass \(m\) is bounded by concentric circles with centre \(O\) and radii \(a\) and \(2 a\). The lamina is free to rotate about a fixed smooth horizontal axis \(T\) which is tangential to the outer rim (see diagram). Show that the moment of inertia of the lamina about \(T\) is \(\frac { 21 } { 4 } m a ^ { 2 }\). When hanging at rest, with \(O\) vertically below \(T\), the lamina is given an angular speed \(\omega\) about \(T\). The lamina comes to instantaneous rest in the subsequent motion. Neglecting air resistance, find the set of possible values of \(\omega\).
Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-3_512_983_267_580} A uniform sphere rests on a horizontal plane. The sphere has centre \(O\), radius 0.6 m and weight 36 N . A uniform rod \(A B\), of weight 14 N and length 1 m , rests with \(A\) in contact with the plane and \(B\) in contact with the sphere at the end of a horizontal diameter. The point of contact of the sphere with the plane is \(C\), and \(A , B , C\) and \(O\) lie in the same vertical plane (see diagram). The contacts at \(A , B\) and \(C\) are rough and the system is in equilibrium. By taking moments about \(C\) for the system, show that the magnitude of the normal contact force at \(A\) is 10 N . Show that the magnitudes of the frictional forces at \(A , B\) and \(C\) are equal. The coefficients of friction at \(A , B\) and \(C\) are all equal to \(\mu\). Find the smallest possible value of \(\mu\).
Question 5
View details
5 Two spheres \(A\) and \(B\), of equal radius, have masses \(m _ { 1 }\) and \(m _ { 2 }\) respectively. They lie at rest on a smooth horizontal plane. Sphere \(A\) is projected directly towards sphere \(B\) with speed \(u\) and, as a result of the collision, \(A\) is brought to rest. Show that
  1. the speed of \(B\) immediately after the collision cannot exceed \(u\),
  2. \(m _ { 1 } \leqslant m _ { 2 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-3_273_611_1745_767} After the collision, \(B\) hits a smooth vertical wall which is at an angle of \(60 ^ { \circ }\) to the direction of motion of \(B\) (see diagram). In the impact with the wall \(B\) loses \(\frac { 2 } { 3 }\) of its kinetic energy. Find the coefficient of restitution between \(B\) and the wall and show that the direction of motion of \(B\) turns through \(90 ^ { \circ }\).
Question 6 6 marks
View details
6 The times taken by employees in a factory to complete a certain task have a normal distribution with mean \(\mu\) seconds and standard deviation \(\sigma\) seconds, both of which are unknown. Based on a random sample of 20 employees, the symmetric \(95 \%\) confidence interval for \(\mu\) is \(( 481,509 )\). Calculate a symmetric \(90 \%\) confidence interval for \(\mu\).
[0pt] [6]
Question 7
View details
7 An experiment was carried out to determine how much weedkiller to apply per \(100 \mathrm {~m} ^ { 2 }\) in a large field. Ten \(100 \mathrm {~m} ^ { 2 }\) areas of the field were randomly chosen and sprayed with predetermined volumes of the weedkiller. The volume of the weedkiller is denoted by \(x\) litres and the number of weeds that survived is denoted by \(y\). The results are given in the table.
\(x\)0.100.150.200.250.300.350.400.450.500.55
\(y\)484044353924101396
$$\left[ \Sigma x = 3.25 , \Sigma x ^ { 2 } = 1.2625 , \Sigma y = 268 , \Sigma y ^ { 2 } = 9548 , \Sigma x y = 66.10 . \right]$$ It is given that the product moment correlation coefficient for the data is - 0.951 , correct to 3 decimal places.
  1. Calculate the equation of a suitable regression line, giving a reason for your choice of line.
  2. Estimate the best volume of weedkiller to apply, and comment on the reliability of your estimate.
Question 8
View details
8 Part of a research study of identical twins who had been separated at birth involved a random sample of 9 pairs, in which one twin had been raised by the natural parents and the other by adoptive parents. The IQ scores of these twins were measured, with the following results.
Twin pair123456789
IQ of twin raised by natural parents8292115132889511283123
IQ of twin raised by adoptive parents9288115134979410788130
It may be assumed that the difference in IQ scores has a normal distribution. The mean IQ scores of separated twins raised by natural parents and by adoptive parents are denoted by \(\mu _ { N }\) and \(\mu _ { A }\) respectively. Obtain a \(90 \%\) confidence interval for \(\mu _ { N } - \mu _ { A }\). One of the researchers claimed that there was no evidence of a difference between the two population means. State, giving a reason, whether the confidence interval supports this claim.
Question 9
View details
9 The proportions of blood types \(\mathrm { A } , \mathrm { B } , \mathrm { AB }\) and O in the Australian population are \(38 \% , 10 \% , 3 \%\) and \(49 \%\) respectively. In order to test whether the population in Sydney conforms to these figures, a random sample of 200 residents is selected. The table shows the observed frequencies of these types in the sample.
Blood TypeABABO
Frequency57249110
Carry out a suitable test at the 5\% significance level. Find the smallest sample size that could be used for the test.
Question 10
View details
10 The number of hits per minute on a particular website has a Poisson distribution with mean 0.8. The time between successive hits is denoted by \(T\) minutes. Show that \(\mathrm { P } ( T > t ) = \mathrm { e } ^ { - 0.8 t }\) and hence show that \(T\) has a negative exponential distribution. Using a suitable approximation, which should be justified, find the probability that the time interval between the 1st hit and the 51st hit exceeds one hour.
Question 11 EITHER
View details
\includegraphics[max width=\textwidth, alt={}]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-5_250_878_808_632}
Two particles \(A\) and \(B\), of equal mass \(m\), are connected by a light elastic string of natural length \(a\) and modulus of elasticity \(4 m g\). Particle \(A\) rests on a rough horizontal table at a distance \(a\) from the edge of the table. The string passes over a small smooth pulley \(P\) fixed at the edge of the table. At time \(t = 0 , B\) is released from rest at \(P\) and falls vertically. At time \(t , B\) has fallen a distance \(x\), without \(A\) slipping (see diagram). Show that $$\ddot { x } = - \frac { g } { a } ( 4 x - a ) .$$ Deduce that, while \(A\) does not slip, \(B\) moves in simple harmonic motion and identify the centre of the motion. Given that the coefficient of friction between \(A\) and the table is \(\frac { 1 } { 3 }\), find the value of \(x\) when \(A\) starts to slip, and the corresponding value of \(t\), expressing this answer in the form \(k \sqrt { } \left( \frac { a } { g } \right)\). Give the value of \(k\) correct to 3 decimal places.
Question 11 OR
View details
A study was made of the acidity levels in farmland on opposite sides of an island. The levels were measured at six randomly chosen points on the eastern side and at five randomly chosen points on the western side. The values obtained, in suitable units, are denoted by \(x _ { E }\) and \(x _ { W }\) respectively. The sample means \(\bar { x } _ { E }\) and \(\bar { x } _ { W }\), and unbiased estimates of the two population variances, \(s _ { E } ^ { 2 }\) and \(s _ { W } ^ { 2 }\), are as follows. $$\bar { x } _ { E } = 5.035 , s _ { E } ^ { 2 } = 0.0231 , \bar { x } _ { W } = 4.782 , s _ { W } ^ { 2 } = 0.0195 .$$ The population means on the eastern and western sides are denoted by \(\mu _ { E }\) and \(\mu _ { W }\) respectively. State suitable hypotheses for a test for a difference between the mean acidity levels on the two sides of the island. Stating any required assumptions, obtain the rejection region for a test at the \(5 \%\) significance level of whether the mean acidity levels differ on the two sides of the island. Give the conclusion of the test. Find the largest value of \(a\) for which the samples above provide evidence at the \(5 \%\) significance level that \(\mu _ { E } - \mu _ { W } > a\).