CAIE P3 2019 March — Question 7

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2019
SessionMarch
TopicComplex Numbers Argand & Loci

7
  1. Showing all working and without using a calculator, solve the equation $$( 1 + \mathrm { i } ) z ^ { 2 } - ( 4 + 3 \mathrm { i } ) z + 5 + \mathrm { i } = 0$$ Give your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. The complex number \(u\) is given by $$u = - 1 - \mathrm { i }$$ On a sketch of an Argand diagram show the point representing \(u\). Shade the region whose points represent complex numbers satisfying the inequalities \(| z | < | z - 2 \mathrm { i } |\) and \(\frac { 1 } { 4 } \pi < \arg ( z - u ) < \frac { 1 } { 2 } \pi\).