| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | November |
| Topic | Complex numbers 2 |
State the fifth roots of unity in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(- \pi < \theta \leqslant \pi\).
Simplify
$$\left( x - \left[ \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi \right] \right) \left( x - \left[ \cos \frac { 2 } { 5 } \pi - i \sin \frac { 2 } { 5 } \pi \right] \right)$$
Hence find the real factors of
$$x ^ { 5 } - 1$$
Express the six roots of the equation
$$x ^ { 6 } - x ^ { 3 } + 1 = 0$$
as three conjugate pairs, in the form \(\cos \theta \pm \mathrm { i } \sin \theta\).
Hence find the real factors of
$$x ^ { 6 } - x ^ { 3 } + 1$$