CAIE FP1 (Further Pure Mathematics 1) 2013 November

Question 6
View details
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 3 & - 1 & 2
4 & - 10 & 0 & 2
1 & - 1 & 3 & - 4
5 & - 12 & 1 & 1 \end{array} \right)$$ Find, in either order, the rank of \(\mathbf { M }\) and a basis for the null space \(K\) of T. Evaluate $$\mathbf { M } \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right)$$ and hence show that every solution of $$\mathbf { M x } = \left( \begin{array} { r } 2
16
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\).
Question 10
View details
10
22 \end{array} \right)$$ has the form $$\mathbf { x } = \left( \begin{array} { r } 1
- 2
- 3
- 4 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ where \(\lambda\) and \(\mu\) are real numbers and \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for \(K\). 7 The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\) and state the corresponding eigenvalue. Find the eigenvalues of the matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { l l l } 1 & 3 & 0
2 & 0 & 2
1 & 1 & 2 \end{array} \right)$$ Find the eigenvalues of \(\mathbf { B } ^ { 4 } + 2 \mathbf { B } ^ { 2 } + 3 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. 8 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + s \left( \begin{array} { l } 1
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\). Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has equation \(2 x - y + z = 10\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). 9 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the coordinates of the centroid of the region bounded by \(C\), the \(x\)-axis and the line \(x = 1\). 10 The curve \(C\) has equation $$y = \frac { p x ^ { 2 } + 4 x + 1 } { x + 1 }$$ where \(p\) is a positive constant and \(p \neq 3\).
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(p\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. For the case \(p = 1\), show that \(C\) has no turning points, and sketch \(C\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
Question 16 EITHER
View details
State the fifth roots of unity in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(- \pi < \theta \leqslant \pi\). Simplify $$\left( x - \left[ \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi \right] \right) \left( x - \left[ \cos \frac { 2 } { 5 } \pi - i \sin \frac { 2 } { 5 } \pi \right] \right)$$ Hence find the real factors of $$x ^ { 5 } - 1$$ Express the six roots of the equation $$x ^ { 6 } - x ^ { 3 } + 1 = 0$$ as three conjugate pairs, in the form \(\cos \theta \pm \mathrm { i } \sin \theta\). Hence find the real factors of $$x ^ { 6 } - x ^ { 3 } + 1$$
Question 16 OR
View details
Given that $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y ^ { 3 } = 25 \mathrm { e } ^ { - 2 x }$$ and that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 9 v = 75 \mathrm { e } ^ { - 2 x }$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }