CAIE FP1 (Further Pure Mathematics 1) 2011 November

Question 1
View details
1 Verify that \(\frac { 1 } { n ^ { 2 } } - \frac { 1 } { ( n + 1 ) ^ { 2 } } = \frac { 2 n + 1 } { n ^ { 2 } ( n + 1 ) ^ { 2 } }\). Let \(S _ { N } = \sum _ { r = 1 } ^ { N } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }\). Express \(S _ { N }\) in terms of \(N\). Let \(S = \lim _ { N \rightarrow \infty } S _ { N }\). Find the least value of \(N\) such that \(S - S _ { N } < 10 ^ { - 16 }\).
Question 2
View details
2 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \frac { 1 } { 2 x + 3 } \right) = ( - 1 ) ^ { n } \frac { n ! 2 ^ { n } } { ( 2 x + 3 ) ^ { n + 1 } }$$
Question 3
View details
3 The equation $$x ^ { 3 } + 5 x ^ { 2 } - 3 x - 15 = 0$$ has roots \(\alpha , \beta , \gamma\). Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\). Hence show that the matrix \(\left( \begin{array} { c c c } 1 & \alpha & \beta
\alpha & 1 & \gamma
\beta & \gamma & 1 \end{array} \right)\) is singular.
Question 4
View details
4 A curve has parametric equations $$x = 2 \sin 2 t , \quad y = 3 \cos 2 t$$ for \(0 < t < \frac { 1 } { 2 } \pi\). For the point on the curve where \(t = \frac { 1 } { 3 } \pi\), find the value of
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Question 5
View details
5 Use de Moivre's theorem to express \(\cos ^ { 4 } \theta\) in the form $$a \cos 4 \theta + b \cos 2 \theta + c$$ where \(a , b , c\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta d \theta$$ leaving your answer in terms of \(\pi\).
Question 6
View details
6 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 4 x = \sin 2 t$$ Describe the behaviour of \(x\) as \(t \rightarrow \infty\), justifying your answer.
Question 7
View details
7 Show that \(\frac { \mathrm { d } } { \mathrm { d } t } \left( t \left( 1 + t ^ { 3 } \right) ^ { n } \right) = ( 3 n + 1 ) \left( 1 + t ^ { 3 } \right) ^ { n } - 3 n \left( 1 + t ^ { 3 } \right) ^ { n - 1 }\). Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + t ^ { 3 } \right) ^ { n } \mathrm {~d} t\). Using the above result, or otherwise, show that $$( 3 n + 1 ) I _ { n } = 2 ^ { n } + 3 n I _ { n - 1 }$$ Hence evaluate \(I _ { 3 }\).
Question 8
View details
8 The curve \(C\) has polar equation \(r = 1 + \sin \theta\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). The area of the region enclosed by the initial line, the half-line \(\theta = \frac { 1 } { 2 } \pi\), and the part of \(C\) for which \(\theta\) is positive, is denoted by \(A _ { 1 }\). The area of the region enclosed by the initial line, and the part of \(C\) for which \(\theta\) is negative, is denoted by \(A _ { 2 }\). Find the ratio \(A _ { 1 } : A _ { 2 }\), giving your answer correct to 1 decimal place.
Question 9
View details
9 Find a cartesian equation of the plane \(\Pi\) containing the lines $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + s ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 3 \mathbf { i } - 7 \mathbf { j } + 10 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k } )$$ The line \(l\) passes through the point \(P\) with position vector \(6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k }\). Find
  1. the position vector of the point where \(l\) meets \(\Pi\),
  2. the perpendicular distance from \(P\) to \(\Pi\),
  3. the acute angle between \(l\) and \(\Pi\).
Question 10
View details
10 A curve \(C\) has equation $$y = \frac { 5 \left( x ^ { 2 } - x - 2 \right) } { x ^ { 2 } + 5 x + 10 }$$ Find the coordinates of the points of intersection of \(C\) with the axes. Show that, for all real values of \(x , - 1 \leqslant y \leqslant 15\). Sketch \(C\), stating the coordinates of any turning points and the equation of the horizontal asymptote.
[0pt] [Question 11 is printed on the next page.]
Question 11 EITHER
View details
The curve \(C\) has equation \(y = \frac { 1 } { 3 } x ^ { \frac { 1 } { 2 } } ( 3 - x )\), for \(0 \leqslant x \leqslant 3\). Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 3\). Show that $$\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( x ^ { - \frac { 1 } { 2 } } + x ^ { \frac { 1 } { 2 } } \right)$$ where \(s\) denotes arc length, and find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 11 OR
View details
Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 1 & 2
0 & 2 & 2
- 1 & 1 & 3 \end{array} \right)$$ The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is defined by \(\mathbf { x } \mapsto \mathbf { A x }\). Let \(\mathbf { e } , \mathbf { f }\) be two linearly independent eigenvectors of \(\mathbf { A }\), with corresponding eigenvalues \(\lambda\) and \(\mu\) respectively, and let \(\Pi\) be the plane, through the origin, containing \(\mathbf { e }\) and \(\mathbf { f }\). By considering the parametric equation of \(\Pi\), show that all points of \(\Pi\) are mapped by T onto points of \(\Pi\). Find cartesian equations of three planes, each with the property that all points of the plane are mapped by T onto points of the same plane.