CAIE FP1 (Further Pure Mathematics 1) 2015 June

Question 1
View details
1 Use the List of Formulae (MF10) to show that \(\sum _ { r = 1 } ^ { 13 } \left( 3 r ^ { 2 } - 5 r + 1 \right)\) and \(\sum _ { r = 0 } ^ { 9 } \left( r ^ { 3 } - 1 \right)\) have the same numerical value.
Question 2
View details
2 Find the value of the constant \(k\) for which the system of equations $$\begin{aligned} 2 x - 3 y + 4 z & = 1
3 x - y & = 2
x + 2 y + k z & = 1 \end{aligned}$$ does not have a unique solution. For this value of \(k\), solve the system of equations.
Question 3
View details
3 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } > 5\) and \(a _ { n + 1 } = \frac { 4 a _ { n } } { 5 } + \frac { 5 } { a _ { n } }\) for every positive integer \(n\).
Prove by mathematical induction that \(a _ { n } > 5\) for every positive integer \(n\). Prove also that \(a _ { n } > a _ { n + 1 }\) for every positive integer \(n\).
Question 4
View details
4 The roots of the cubic equation \(x ^ { 3 } - 7 x ^ { 2 } + 2 x - 3 = 0\) are \(\alpha , \beta\) and \(\gamma\). Find the values of
  1. \(\frac { 1 } { ( \alpha \beta ) ( \beta \gamma ) ( \gamma \alpha ) }\),
  2. \(\frac { 1 } { \alpha \beta } + \frac { 1 } { \beta \gamma } + \frac { 1 } { \gamma \alpha }\),
  3. \(\frac { 1 } { \alpha ^ { 2 } \beta \gamma } + \frac { 1 } { \alpha \beta ^ { 2 } \gamma } + \frac { 1 } { \alpha \beta \gamma ^ { 2 } }\). Deduce a cubic equation, with integer coefficients, having roots \(\frac { 1 } { \alpha \beta } , \frac { 1 } { \beta \gamma }\) and \(\frac { 1 } { \gamma \alpha }\).
Question 5
View details
5 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$\begin{array} { l l } C _ { 1 } : & r = \frac { 1 } { \sqrt { 2 } } , \quad \text { for } 0 \leqslant \theta < 2 \pi
C _ { 2 } : & r = \sqrt { } \left( \sin \frac { 1 } { 2 } \theta \right) , \quad \text { for } 0 \leqslant \theta \leqslant \pi \end{array}$$ Find the polar coordinates of the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\). Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram. Find the exact value of the area of the region enclosed by \(C _ { 1 } , C _ { 2 }\) and the half-line \(\theta = 0\).
Question 6
View details
6 A curve has equation \(x ^ { 2 } - 6 x y + 25 y ^ { 2 } = 16\). Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at the point \(( 3,1 )\). By finding the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 3,1 )\), determine the nature of this turning point.
Question 7
View details
7 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), where \(n\) is a non-negative integer. Show that $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 } , \quad \text { for } n \geqslant 2$$ Find the exact value of \(I _ { 4 }\).
Question 8
View details
8 By considering \(\sum _ { r = 1 } ^ { n } z ^ { 2 r - 1 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), show that, if \(\sin \theta \neq 0\), $$\sum _ { r = 1 } ^ { n } \sin ( 2 r - 1 ) \theta = \frac { \sin ^ { 2 } n \theta } { \sin \theta }$$ Deduce that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) \cos \left[ \frac { ( 2 r - 1 ) \pi } { 2 n } \right] = - \operatorname { cosec } \left( \frac { \pi } { 2 n } \right) \cot \left( \frac { \pi } { 2 n } \right)$$
Question 9
View details
9 The curve \(C\) has parametric equations $$x = 4 t + 2 t ^ { \frac { 3 } { 2 } } , \quad y = 4 t - 2 t ^ { \frac { 3 } { 2 } } , \quad \text { for } 0 \leqslant t \leqslant 4$$ Find the arc length of \(C\), giving your answer correct to 3 significant figures. Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 32\).
Question 10
View details
10 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 2 & - 3
2 & 2 & 3
- 3 & 3 & 3 \end{array} \right)$$ The matrix \(\mathbf { A }\) has an eigenvector \(\left( \begin{array} { r } 1
- 1
1 \end{array} \right)\). Find the corresponding eigenvalue. The matrix \(\mathbf { A }\) also has eigenvalues 4 and 6. Find corresponding eigenvectors. Hence find a matrix \(\mathbf { P }\) such that \(\mathbf { A } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\), where \(\mathbf { D }\) is a diagonal matrix which is to be determined. The matrix \(\mathbf { B }\) is such that \(\mathbf { B } = \mathbf { Q A Q } ^ { - 1 }\), where $$\mathbf { Q } = \left( \begin{array} { r r r } 4 & 11 & 5
1 & 4 & 2
1 & 2 & 1 \end{array} \right)$$ By using the expression \(\mathbf { P D P } ^ { - 1 }\) for \(\mathbf { A }\), find the set of eigenvalues and a corresponding set of eigenvectors for \(\mathbf { B }\).
[0pt] [Question 11 is printed on the next page.]
Question 11 EITHER
View details
Show that the substitution \(v = \frac { 1 } { y }\) reduces the differential equation $$\frac { 2 } { y ^ { 3 } } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - \frac { 1 } { y ^ { 2 } } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { 2 } { y ^ { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} x } + \frac { 5 } { y } = 17 + 6 x - 5 x ^ { 2 }$$ to the differential equation $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 5 v = 17 + 6 x - 5 x ^ { 2 }$$ Hence find \(y\) in terms of \(x\), given that when \(x = 0 , y = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 1\).
Question 11 OR
View details
The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 8 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } )\) and \(\mathbf { r } = 5 \mathbf { i } + 3 \mathbf { j } - 14 \mathbf { k } + \mu ( 2 \mathbf { j } - 3 \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vector of the point \(P\) and the position vector of the point \(Q\). The points with position vectors \(8 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\) and \(5 \mathbf { i } + 3 \mathbf { j } - 14 \mathbf { k }\) are denoted by \(A\) and \(B\) respectively. Find
  1. \(\overrightarrow { A P } \times \overrightarrow { A Q }\) and hence the area of the triangle \(A P Q\),
  2. the volume of the tetrahedron \(A P Q B\). (You are given that the volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.) \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series.
    Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }