CAIE FP1 (Further Pure Mathematics 1) 2013 June

Question 1
View details
1 Let \(\mathrm { f } ( r ) = r ! ( r - 1 )\). Simplify \(\mathrm { f } ( r + 1 ) - \mathrm { f } ( r )\) and hence find \(\sum _ { r = n + 1 } ^ { 2 n } r ! \left( r ^ { 2 } + 1 \right)\).
Question 2
View details
2 The roots of the equation \(x ^ { 4 } - 4 x ^ { 2 } + 3 x - 2 = 0\) are \(\alpha , \beta , \gamma\) and \(\delta\); the sum \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). By using the relation \(y = x ^ { 2 }\), or otherwise, show that \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) and \(\delta ^ { 2 }\) are the roots of the equation $$y ^ { 4 } - 8 y ^ { 3 } + 12 y ^ { 2 } + 7 y + 4 = 0$$ State the value of \(S _ { 2 }\) and hence show that $$S _ { 8 } = 8 S _ { 6 } - 12 S _ { 4 } - 72 .$$
Question 3
View details
3 Prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x } \sin x \right) = ( \sqrt { } 2 ) ^ { n } \mathrm { e } ^ { x } \sin \left( x + \frac { 1 } { 4 } n \pi \right)$$
Question 4
View details
4 Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 } { 3 }\) at the point \(A ( 1 , - 2 )\) on the curve with equation $$y ^ { 3 } - 3 x ^ { 2 } y + 2 = 0$$ and find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
Question 5
View details
5 Show that \(\int _ { 0 } ^ { 1 } x \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 2 } - \frac { 1 } { 2 \mathrm { e } }\). Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x\). Show that \(I _ { 2 n + 1 } = n I _ { 2 n - 1 } - \frac { 1 } { 2 \mathrm { e } }\) for \(n \geqslant 1\). Find the exact value of \(I _ { 7 }\).
Question 6
View details
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } - 2 & 5 & 3 & - 1
0 & 1 & - 4 & - 2
6 & - 14 & - 13 & 1
\alpha & \alpha & - 2 \alpha & - 11 \alpha \end{array} \right)$$ and \(\alpha\) is a constant. The null space of T is denoted by \(K _ { 1 }\) when \(\alpha \neq 0\), and by \(K _ { 2 }\) when \(\alpha = 0\). Find a basis for \(K _ { 1 }\) and a basis for \(K _ { 2 }\).
Question 7
View details
7 Find the value of the constant \(\lambda\) such that \(\lambda x \mathrm { e } ^ { - x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 6 \mathrm { e } ^ { - x }$$ Find the solution of the differential equation for which \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) when \(x = 0\).
Question 8
View details
8 The curve \(C\) has parametric equations \(x = \frac { 3 } { 2 } t ^ { 2 } , y = t ^ { 3 }\), for \(0 \leqslant t \leqslant 2\). Find the arc length of \(C\). Find the coordinates of the centroid of the region enclosed by \(C\), the \(x\)-axis and the line \(x = 6\).
Question 9
View details
9 The square matrix \(\mathbf { A }\) has an eigenvalue \(\lambda\) with corresponding eigenvector \(\mathbf { e }\). The non-singular matrix \(\mathbf { M }\) is of the same order as \(\mathbf { A }\). Show that \(\mathbf { M e }\) is an eigenvector of the matrix \(\mathbf { B }\), where \(\mathbf { B } = \mathbf { M } \mathbf { A } \mathbf { M } ^ { - 1 }\), and that \(\lambda\) is the corresponding eigenvalue. Let $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 2 & 1
0 & 1 & 4
0 & 0 & 2 \end{array} \right)$$ Write down the eigenvalues of \(\mathbf { A }\) and obtain corresponding eigenvectors. Given that $$\mathbf { M } = \left( \begin{array} { l l l } 1 & 0 & 1
0 & 1 & 0
0 & 0 & 1 \end{array} \right)$$ find the eigenvalues and corresponding eigenvectors of \(\mathbf { B }\).
Question 10
View details
10 Use the identity \(2 \sin P \cos Q \equiv \sin ( P + Q ) + \sin ( P - Q )\) to show that $$2 \sin \theta \cos \left( \theta - \frac { 1 } { 4 } \pi \right) \equiv \cos \left( 2 \theta - \frac { 3 } { 4 } \pi \right) + \frac { 1 } { \sqrt { } 2 }$$ A curve has polar equation \(r = 2 \sin \theta \cos \left( \theta - \frac { 1 } { 4 } \pi \right)\), for \(0 \leqslant \theta \leqslant \frac { 3 } { 4 } \pi\). Sketch the curve and state the polar equation of its line of symmetry, justifying your answer. Show that the area of the region enclosed by the curve is \(\frac { 3 } { 8 } ( \pi + 1 )\).
Question 11 EITHER
View details
The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(4 \mathbf { i } + 7 \mathbf { j } - \mathbf { k }\) and is parallel to the vector \(3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(\mathbf { i } + 7 \mathbf { j } + 11 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } - 6 \mathbf { j } - 2 \mathbf { k }\). The points \(P\) on \(l _ { 1 }\) and \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vectors of \(P\) and \(Q\). Find the shortest distance between the line through \(A\) and \(B\) and the line through \(P\) and \(Q\), giving your answer correct to 3 significant figures.
Question 11 OR
View details
Show the cube roots of 1 on an Argand diagram. Show that the two non-real cube roots can be expressed in the form \(\omega\) and \(\omega ^ { 2 }\), and find these cube roots in exact cartesian form \(x + i y\). Evaluate the determinant $$\left| \begin{array} { c c c } 1 & 3 \omega & 2 \omega ^ { 2 }
3 \omega ^ { 2 } & 2 & \omega
2 \omega & \omega ^ { 2 } & 3 \end{array} \right|$$ It is given that \(z = ( 4 \sqrt { } 3 ) \left( \cos \frac { 4 } { 3 } \pi + i \sin \frac { 4 } { 3 } \pi \right) - 4 \left( \cos \frac { 11 } { 6 } \pi + i \sin \frac { 11 } { 6 } \pi \right)\). Express \(z\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), giving exact values for \(r\) and \(\theta\). Hence find the cube roots of \(z\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\).