2 The roots of the equation \(x ^ { 4 } - 4 x ^ { 2 } + 3 x - 2 = 0\) are \(\alpha , \beta , \gamma\) and \(\delta\); the sum \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). By using the relation \(y = x ^ { 2 }\), or otherwise, show that \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) and \(\delta ^ { 2 }\) are the roots of the equation
$$y ^ { 4 } - 8 y ^ { 3 } + 12 y ^ { 2 } + 7 y + 4 = 0$$
State the value of \(S _ { 2 }\) and hence show that
$$S _ { 8 } = 8 S _ { 6 } - 12 S _ { 4 } - 72 .$$