CAIE FP1 (Further Pure Mathematics 1) 2010 June

Question 1
View details
1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 1\) and $$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).
Question 2
View details
2 The curve \(C\) has polar equation $$r = a \left( 1 - \mathrm { e } ^ { - \theta } \right)$$ where \(a\) is a positive constant and \(0 \leqslant \theta < 2 \pi\).
  1. Draw a sketch of \(C\).
  2. Show that the area of the region bounded by \(C\) and the lines \(\theta = \ln 2\) and \(\theta = \ln 4\) is $$\frac { 1 } { 2 } a ^ { 2 } \left( \ln 2 - \frac { 13 } { 32 } \right)$$
Question 3
View details
3 At any point \(( x , y )\) on the curve \(C\), $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$ where the parameter \(t\) is such that \(0 \leqslant t \leqslant 2\). Show that the length of \(C\) is \(4 \sqrt { } 2\). Given that \(y = 0\) when \(t = 2\), determine the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis, leaving your answer in an exact form.
Question 4
View details
4 The sum \(S _ { N }\) is defined by \(S _ { N } = \sum _ { n = 1 } ^ { N } n ^ { 5 }\). Using the identity $$\left( n + \frac { 1 } { 2 } \right) ^ { 6 } - \left( n - \frac { 1 } { 2 } \right) ^ { 6 } \equiv 6 n ^ { 5 } + 5 n ^ { 3 } + \frac { 3 } { 8 } n$$ find \(S _ { N }\) in terms of \(N\). [You need not simplify your result.] Hence find \(\lim _ { N \rightarrow \infty } N ^ { - \lambda } S _ { N }\), for each of the two cases
  1. \(\lambda = 6\),
  2. \(\lambda > 6\).
Question 5
View details
5 Let $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ( \ln x ) ^ { n } \mathrm {~d} x$$ where \(n \geqslant 1\). Show that $$I _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } ( n + 1 ) I _ { n }$$ Hence prove by induction that, for all positive integers \(n , I _ { n }\) is of the form \(A _ { n } \mathrm { e } ^ { 2 } + B _ { n }\), where \(A _ { n }\) and \(B _ { n }\) are rational numbers.
Question 6
View details
6 The equation $$x ^ { 3 } + x - 1 = 0$$ has roots \(\alpha , \beta , \gamma\). Use the relation \(x = \sqrt { } y\) to show that the equation $$y ^ { 3 } + 2 y ^ { 2 } + y - 1 = 0$$ has roots \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\). Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n }\).
  1. Write down the value of \(S _ { 2 }\) and show that \(S _ { 4 } = 2\).
  2. Find the values of \(S _ { 6 }\) and \(S _ { 8 }\).
Question 7
View details
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = 4 \mathbf { i } - 2 \mathbf { j } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j } + 2 \mathbf { k } + \mu ( \mathbf { i } - \mathbf { j } - \mathbf { k } )$$ respectively.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  2. Find the perpendicular distance from the point \(P\) whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 1 }\).
Question 8
View details
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 1 & - 1
- 4 & - 1 & 4
0 & - 1 & 5 \end{array} \right)$$ Given that one eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 1
- 2
- 1 \end{array} \right)\), find the corresponding eigenvalue. Given also that another eigenvalue of \(\mathbf { A }\) is 4, find a corresponding eigenvector. Given further that \(\left( \begin{array} { r } 1
- 4
- 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), with corresponding eigenvalue 1 , find matrices \(\mathbf { P }\) and \(\mathbf { Q }\), together with a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { A } ^ { 5 } = \mathbf { P D Q }\).
Question 9
View details
9
  1. Write down the five fifth roots of unity.
  2. Hence find all the roots of the equation $$z ^ { 5 } + 16 + ( 16 \sqrt { } 3 ) i = 0$$ giving answers in the form \(r \mathrm { e } ^ { \mathrm { i } q \pi }\), where \(r > 0\) and \(q\) is a rational number. Show these roots on an Argand diagram. Let \(w\) be a root of the equation in part (ii).
  3. Show that $$\sum _ { k = 0 } ^ { 4 } \left( \frac { w } { 2 } \right) ^ { k } = \frac { 3 + \mathrm { i } \sqrt { } 3 } { 2 - w }$$
  4. Identify the root for which \(| 2 - w |\) is least.
Question 10
View details
10 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} x + 4 y + 12 z & = 5
2 x + a y + 12 z & = a - 1
3 x + 12 y + 2 a z & = 10 \end{aligned}$$ has a unique solution. Show that the system does not have any solution in the case \(a = 18\). Given that \(a = 8\), show that the number of solutions is infinite and find the solution for which \(x + y + z = 1\).
Question 11 EITHER
View details
The variables \(z\) and \(x\) are related by the differential equation $$3 z ^ { 2 } \frac { \mathrm {~d} ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 z ^ { 2 } \frac { \mathrm {~d} z } { \mathrm {~d} x } + 6 z \left( \frac { \mathrm {~d} z } { \mathrm {~d} x } \right) ^ { 2 } + 5 z ^ { 3 } = 5 x + 2$$ Use the substitution \(y = z ^ { 3 }\) to show that \(y\) and \(x\) are related by the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5 x + 2$$ Given that \(z = 1\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = - \frac { 2 } { 3 }\) when \(x = 0\), find \(z\) in terms of \(x\). Deduce that, for large positive values of \(x , z \approx x ^ { \frac { 1 } { 3 } }\).
Question 11 OR
View details
The curve \(C\) has equation $$y = \frac { x ( x + 1 ) } { ( x - 1 ) ^ { 2 } }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that there is exactly one point of intersection of \(C\) with the asymptotes and find its coordinates.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence
    (a) find the coordinates of any stationary points of \(C\),
    (b) state the set of values of \(x\) for which the gradient of \(C\) is negative.
  4. Draw a sketch of \(C\).