OCR FP2 2009 June — Question 8

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJune
TopicHyperbolic functions

8
  1. Using the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that
    (a) \(\cosh ( \ln a ) \equiv \frac { a ^ { 2 } + 1 } { 2 a }\), where \(a > 0\),
    (b) \(\cosh x \cosh y - \sinh x \sinh y \equiv \cosh ( x - y )\).
  2. Use part (i)(b) to show that \(\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1\).
  3. Given that \(R > 0\) and \(a > 1\), find \(R\) and \(a\) such that $$13 \cosh x - 5 \sinh x \equiv R \cosh ( x - \ln a )$$
  4. Hence write down the coordinates of the minimum point on the curve with equation \(y = 13 \cosh x - 5 \sinh x\).