OCR FP2 2009 June — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJune
TopicIntegration by Substitution

5 It is given that \(I = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \cos \theta } { 1 + \cos \theta } \mathrm { d } \theta\).
  1. By using the substitution \(t = \tan \frac { 1 } { 2 } \theta\), show that \(I = \int _ { 0 } ^ { 1 } \left( \frac { 2 } { 1 + t ^ { 2 } } - 1 \right) \mathrm { d } t\).
  2. Hence find \(I\) in terms of \(\pi\).