10 The cubic equation \(x ^ { 3 } + 3 x ^ { 2 } + 2 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
- Use the substitution \(x = \frac { 1 } { \sqrt { u } }\) to show that \(4 u ^ { 3 } + 12 u ^ { 2 } + 9 u - 1 = 0\).
- Hence find the values of \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } }\) and \(\frac { 1 } { \alpha ^ { 2 } \beta ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } \gamma ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } \alpha ^ { 2 } }\).