OCR MEI M1 2009 January — Question 7

Exam BoardOCR MEI
ModuleM1 (Mechanics 1)
Year2009
SessionJanuary
TopicFriction

7 An explorer is trying to pull a loaded sledge of total mass 100 kg along horizontal ground using a light rope. The only resistance to motion of the sledge is from friction between it and the ground. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93a5d409-ade4-418b-9c09-620d97df97de-4_327_1013_482_566} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Initially she pulls with a force of 121 N on the rope inclined at \(34 ^ { \circ }\) to the horizontal, as shown in Fig. 7, but the sledge does not move.
  1. Draw a diagram showing all the forces acting on the sledge. Show that the frictional force between the ground and the sledge is 100 N , correct to 3 significant figures. Calculate the normal reaction of the ground on the sledge. The sledge is given a small push to set it moving at \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The explorer continues to pull on the rope with the same force and the same angle as before. The frictional force is also unchanged.
  2. Describe the subsequent motion of the sledge. The explorer now pulls the rope, still at an angle of \(34 ^ { \circ }\) to the horizontal, so that the tension in it is 155 N . The frictional force is now 95 N .
  3. Calculate the acceleration of the sledge. In a new situation, there is no rope and the sledge slides down a uniformly rough slope inclined at \(26 ^ { \circ }\) to the horizontal. The sledge starts from rest and reaches a speed of \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in 2 seconds.
  4. Calculate the frictional force between the slope and the sledge.