OCR MEI M1 (Mechanics 1) 2009 January

Question 1
View details
1 A particle is travelling in a straight line. Its velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at time \(t\) seconds is given by $$v = 6 + 4 t \quad \text { for } 0 \leqslant t \leqslant 5$$
  1. Write down the initial velocity of the particle and find the acceleration for \(0 \leqslant t \leqslant 5\).
  2. Write down the velocity of the particle when \(t = 5\). Find the distance travelled in the first 5 seconds. For \(5 \leqslant t \leqslant 15\), the acceleration of the particle is \(3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  3. Find the total distance travelled by the particle during the 15 seconds.
Question 2
View details
2 Fig. 2 shows an acceleration-time graph modelling the motion of a particle. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93a5d409-ade4-418b-9c09-620d97df97de-2_684_1070_1064_536} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} At \(t = 0\) the particle has a velocity of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the positive direction.
  1. Find the velocity of the particle when \(t = 2\).
  2. At what time is the particle travelling in the negative direction with a speed of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) ?
Question 3
View details
3 The resultant of the force \(\binom { - 4 } { 8 } \mathrm {~N}\) and the force \(\mathbf { F }\) gives an object of mass 6 kg an acceleration of \(\binom { 2 } { 3 } \mathrm {~ms} ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\).
  2. Calculate the angle between \(\mathbf { F }\) and the vector \(\binom { 0 } { 1 }\).
Question 4
View details
4 Sandy is throwing a stone at a plum tree. The stone is thrown from a point O at a speed of \(35 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(\alpha\) to the horizontal, where \(\cos \alpha = 0.96\). You are given that, \(t\) seconds after being thrown, the stone is \(\left( 9.8 t - 4.9 t ^ { 2 } \right) \mathrm { m }\) higher than O . When descending, the stone hits a plum which is 3.675 m higher than O . Air resistance should be neglected. Calculate the horizontal distance of the plum from O .
Question 5
View details
5 A man of mass 75 kg is standing in a lift. He is holding a parcel of mass 5 kg by means of a light inextensible string, as shown in Fig. 5. The tension in the string is 55 N . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93a5d409-ade4-418b-9c09-620d97df97de-3_456_476_833_833} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure}
  1. Find the upward acceleration.
  2. Find the reaction on the man of the lift floor.
Question 6
View details
6 Small stones A and B are initially in the positions shown in Fig. 6 with B a height \(H \mathrm {~m}\) directly above A. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93a5d409-ade4-418b-9c09-620d97df97de-3_318_271_1800_938} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} At the instant when B is released from rest, A is projected vertically upwards with a speed of \(29.4 \mathrm {~m} \mathrm {~s} \mathrm {~s} ^ { - 1 }\). Air resistance may be neglected. The stones collide \(T\) seconds after they begin to move. At this instant they have the same speed, \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and A is still rising. By considering when the speed of A upwards is the same as the speed of B downwards, or otherwise, show that \(T = 1.5\) and find the values of \(V\) and \(H\). Section B (36 marks)
Question 7
View details
7 An explorer is trying to pull a loaded sledge of total mass 100 kg along horizontal ground using a light rope. The only resistance to motion of the sledge is from friction between it and the ground. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93a5d409-ade4-418b-9c09-620d97df97de-4_327_1013_482_566} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Initially she pulls with a force of 121 N on the rope inclined at \(34 ^ { \circ }\) to the horizontal, as shown in Fig. 7, but the sledge does not move.
  1. Draw a diagram showing all the forces acting on the sledge. Show that the frictional force between the ground and the sledge is 100 N , correct to 3 significant figures. Calculate the normal reaction of the ground on the sledge. The sledge is given a small push to set it moving at \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The explorer continues to pull on the rope with the same force and the same angle as before. The frictional force is also unchanged.
  2. Describe the subsequent motion of the sledge. The explorer now pulls the rope, still at an angle of \(34 ^ { \circ }\) to the horizontal, so that the tension in it is 155 N . The frictional force is now 95 N .
  3. Calculate the acceleration of the sledge. In a new situation, there is no rope and the sledge slides down a uniformly rough slope inclined at \(26 ^ { \circ }\) to the horizontal. The sledge starts from rest and reaches a speed of \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in 2 seconds.
  4. Calculate the frictional force between the slope and the sledge.
Question 8
View details
8 A toy boat moves in a horizontal plane with position vector \(\mathbf { r } = x \mathbf { i } + y \mathbf { j }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are the standard unit vectors east and north respectively. The origin of the position vectors is at O . The displacements \(x\) and \(y\) are in metres. First consider only the motion of the boat parallel to the \(x\)-axis. For this motion $$x = 8 t - 2 t ^ { 2 }$$ The velocity of the boat in the \(x\)-direction is \(v _ { x } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find an expression in terms of \(t\) for \(v _ { x }\) and determine when the boat instantaneously has zero speed in the \(x\)-direction. Now consider only the motion of the boat parallel to the \(y\)-axis. For this motion $$v _ { y } = ( t - 2 ) ( 3 t - 2 )$$ where \(v _ { y } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the velocity of the boat in the \(y\)-direction at time \(t\) seconds.
  2. Given that \(y = 3\) when \(t = 1\), use integration to show that \(y = t ^ { 3 } - 4 t ^ { 2 } + 4 t + 2\). The position vector of the boat is given in terms of \(t\) by \(\mathbf { r } = \left( 8 t - 2 t ^ { 2 } \right) \mathbf { i } + \left( t ^ { 3 } - 4 t ^ { 2 } + 4 t + 2 \right) \mathbf { j }\).
  3. Find the time(s) when the boat is due north of O and also the distance of the boat from O at any such times.
  4. Find the time(s) when the boat is instantaneously at rest. Find the distance of the boat from O at any such times.
  5. Plot a graph of the path of the boat for \(0 \leqslant t \leqslant 2\).