OCR MEI C3 2009 June — Question 9

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
Year2009
SessionJune
TopicProduct & Quotient Rules

9 Fig. 9 shows the curve \(y = \frac { x ^ { 2 } } { 3 x - 1 }\).
P is a turning point, and the curve has a vertical asymptote \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1167a0e5-48c8-48e0-b2d1-76a50bad03ad-4_844_1486_447_331} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ( 3 x - 2 ) } { ( 3 x - 1 ) ^ { 2 } }\).
  3. Find the exact coordinates of the turning point P . Calculate the gradient of the curve when \(x = 0.6\) and \(x = 0.8\), and hence verify that P is a minimum point.
  4. Using the substitution \(u = 3 x - 1\), show that \(\int \frac { x ^ { 2 } } { 3 x - 1 } \mathrm {~d} x = \frac { 1 } { 27 } \int \left( u + 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines \(x = \frac { 2 } { 3 }\) and \(x = 1\).