OCR MEI C3 (Core Mathematics 3) 2009 June

Question 1
View details
1 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin 3 x \mathrm {~d} x\).
Question 2
View details
2 A radioactive substance decays exponentially, so that its mass \(M\) grams can be modelled by the equation \(M = A \mathrm { e } ^ { - k t }\), where \(t\) is the time in years, and \(A\) and \(k\) are positive constants.
  1. An initial mass of 100 grams of the substance decays to 50 grams in 1500 years. Find \(A\) and \(k\).
  2. The substance becomes safe when \(99 \%\) of its initial mass has decayed. Find how long it will take before the substance becomes safe.
Question 3
View details
3 Sketch the curve \(y = 2 \arccos x\) for \(- 1 \leqslant x \leqslant 1\).
Question 4
View details
4 Fig. 4 shows a sketch of the graph of \(y = 2 | x - 1 |\). It meets the \(x\) - and \(y\)-axes at ( \(a , 0\) ) and ( \(0 , b\) ) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1167a0e5-48c8-48e0-b2d1-76a50bad03ad-2_478_556_1247_792} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the values of \(a\) and \(b\).
Question 5
View details
5 The equation of a curve is given by \(\mathrm { e } ^ { 2 y } = 1 + \sin x\).
  1. By differentiating implicitly, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find an expression for \(y\) in terms of \(x\), and differentiate it to verify the result in part (i).
Question 6
View details
6 Given that \(\mathrm { f } ( x ) = \frac { x + 1 } { x - 1 }\), show that \(\mathrm { ff } ( x ) = x\).
Hence write down the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). What can you deduce about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?
Question 7
View details
7
  1. Show that
    (A) \(( x - y ) \left( x ^ { 2 } + x y + y ^ { 2 } \right) = x ^ { 3 } - y ^ { 3 }\),
    (B) \(\left( x + \frac { 1 } { 2 } y \right) ^ { 2 } + \frac { 3 } { 4 } y ^ { 2 } = x ^ { 2 } + x y + y ^ { 2 }\).
  2. Hence prove that, for all real numbers \(x\) and \(y\), if \(x > y\) then \(x ^ { 3 } > y ^ { 3 }\). Section B (36 marks)
Question 8
View details
8 Fig. 8 shows the line \(y = x\) and parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where $$\mathrm { f } ( x ) = \mathrm { e } ^ { x - 1 } , \quad \mathrm {~g} ( x ) = 1 + \ln x$$ The curves intersect the axes at the points A and B , as shown. The curves and the line \(y = x\) meet at the point C . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1167a0e5-48c8-48e0-b2d1-76a50bad03ad-3_807_897_1016_625} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of A and B . Verify that the coordinates of C are \(( 1,1 )\).
  2. Prove algebraically that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
  3. Evaluate \(\int _ { 0 } ^ { 1 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in terms of e.
  4. Use integration by parts to find \(\int \ln x \mathrm {~d} x\). Hence show that \(\int _ { \mathrm { e } ^ { - 1 } } ^ { 1 } \mathrm {~g} ( x ) \mathrm { d } x = \frac { 1 } { \mathrm { e } }\).
  5. Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .
Question 9
View details
9 Fig. 9 shows the curve \(y = \frac { x ^ { 2 } } { 3 x - 1 }\).
P is a turning point, and the curve has a vertical asymptote \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1167a0e5-48c8-48e0-b2d1-76a50bad03ad-4_844_1486_447_331} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ( 3 x - 2 ) } { ( 3 x - 1 ) ^ { 2 } }\).
  3. Find the exact coordinates of the turning point P . Calculate the gradient of the curve when \(x = 0.6\) and \(x = 0.8\), and hence verify that P is a minimum point.
  4. Using the substitution \(u = 3 x - 1\), show that \(\int \frac { x ^ { 2 } } { 3 x - 1 } \mathrm {~d} x = \frac { 1 } { 27 } \int \left( u + 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines \(x = \frac { 2 } { 3 }\) and \(x = 1\).