OCR C3 2009 January — Question 9

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2009
SessionJanuary
TopicReciprocal Trig & Identities

9
  1. By first expanding \(\cos ( 2 \theta + \theta )\), prove that $$\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta$$
  2. Hence prove that $$\cos 6 \theta \equiv 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$
  3. Show that the only solutions of the equation $$1 + \cos 6 \theta = 18 \cos ^ { 2 } \theta$$ are odd multiples of \(90 ^ { \circ }\).