A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q9
OCR C3 2009 January — Question 9
Exam Board
OCR
Module
C3 (Core Mathematics 3)
Year
2009
Session
January
Topic
Reciprocal Trig & Identities
9
By first expanding \(\cos ( 2 \theta + \theta )\), prove that $$\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta$$
Hence prove that $$\cos 6 \theta \equiv 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$
Show that the only solutions of the equation $$1 + \cos 6 \theta = 18 \cos ^ { 2 } \theta$$ are odd multiples of \(90 ^ { \circ }\).
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9