OCR C3 (Core Mathematics 3) 2009 January

Question 1
View details
1 Find
  1. \(\int 8 \mathrm { e } ^ { - 2 x } \mathrm {~d} x\),
  2. \(\int ( 4 x + 5 ) ^ { 6 } \mathrm {~d} x\).
Question 2
View details
2
  1. Use Simpson's rule with four strips to find an approximation to $$\int _ { 4 } ^ { 12 } \ln x \mathrm {~d} x$$ giving your answer correct to 2 decimal places.
  2. Deduce an approximation to \(\int _ { 4 } ^ { 12 } \ln \left( x ^ { 10 } \right) \mathrm { d } x\).
Question 3
View details
3
  1. Express \(2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta }\) in terms of \(\sec \theta\).
  2. Hence solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta } = 4$$
Question 4
View details
4 For each of the following curves, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and determine the exact \(x\)-coordinate of the stationary point:
  1. \(y = \left( 4 x ^ { 2 } + 1 \right) ^ { 5 }\),
  2. \(y = \frac { x ^ { 2 } } { \ln x }\).
Question 5
View details
5 The mass, \(M\) grams, of a certain substance is increasing exponentially so that, at time \(t\) hours, the mass is given by $$M = 40 \mathrm { e } ^ { k t }$$ where \(k\) is a constant. The following table shows certain values of \(t\) and \(M\).
\(t\)02163
\(M\)80
  1. In either order,
    (a) find the values missing from the table,
    (b) determine the value of \(k\).
  2. Find the rate at which the mass is increasing when \(t = 21\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{c940af95-e291-402a-856c-9090d13163d5-3_627_689_264_726} The function f is defined for all real values of \(x\) by $$f ( x ) = \sqrt [ 3 ] { \frac { 1 } { 2 } x + 2 }$$ The graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\) meet at the point \(P\), and the graph of \(y = \mathrm { f } ^ { - 1 } ( x )\) meets the \(x\)-axis at \(Q\) (see diagram).
  1. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and determine the \(x\)-coordinate of the point \(Q\).
  2. State how the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\) are related geometrically, and hence show that the \(x\)-coordinate of the point \(P\) is the root of the equation $$x = \sqrt [ 3 ] { \frac { 1 } { 2 } x + 2 }$$
  3. Use an iterative process, based on the equation \(x = \sqrt [ 3 ] { \frac { 1 } { 2 } x + 2 }\), to find the \(x\)-coordinate of \(P\), giving your answer correct to 2 decimal places.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{c940af95-e291-402a-856c-9090d13163d5-3_419_700_1809_721} The diagram shows the curve \(y = \mathrm { e } ^ { k x } - a\), where \(k\) and \(a\) are constants.
  1. Give details of the pair of transformations which transforms the curve \(y = \mathrm { e } ^ { x }\) to the curve \(y = \mathrm { e } ^ { k x } - a\).
  2. Sketch the curve \(y = \left| \mathrm { e } ^ { k x } - a \right|\).
  3. Given that the curve \(y = \left| \mathrm { e } ^ { k x } - a \right|\) passes through the points \(( 0,13 )\) and \(( \ln 3,13 )\), find the values of \(k\) and \(a\).
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{c940af95-e291-402a-856c-9090d13163d5-4_538_702_264_719} The diagram shows the curve with equation $$y = \frac { 6 } { \sqrt { x } } - 3$$ The point \(P\) has coordinates \(( 0 , p )\). The shaded region is bounded by the curve and the lines \(x = 0\), \(y = 0\) and \(y = p\). The shaded region is rotated completely about the \(y\)-axis to form a solid of volume \(V\).
  1. Show that \(V = 16 \pi \left( 1 - \frac { 27 } { ( p + 3 ) ^ { 3 } } \right)\).
  2. It is given that \(P\) is moving along the \(y\)-axis in such a way that, at time \(t\), the variables \(p\) and \(t\) are related by $$\frac { \mathrm { d } p } { \mathrm {~d} t } = \frac { 1 } { 3 } p + 1 .$$ Find the value of \(\frac { \mathrm { d } V } { \mathrm {~d} t }\) at the instant when \(p = 9\).
Question 9
View details
9
  1. By first expanding \(\cos ( 2 \theta + \theta )\), prove that $$\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta$$
  2. Hence prove that $$\cos 6 \theta \equiv 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$
  3. Show that the only solutions of the equation $$1 + \cos 6 \theta = 18 \cos ^ { 2 } \theta$$ are odd multiples of \(90 ^ { \circ }\).