OCR C2 2013 June — Question 9

Exam BoardOCR
ModuleC2 (Core Mathematics 2)
Year2013
SessionJune
TopicFactor & Remainder Theorem
TypeTrigonometric substitution equations

9 The cubic polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 4 x ^ { 3 } - 7 x - 3\).
  1. Find the remainder when \(\mathrm { f } ( x )\) is divided by ( \(x - 2\) ).
  2. Show that ( \(2 x + 1\) ) is a factor of \(\mathrm { f } ( x )\) and hence factorise \(\mathrm { f } ( x )\) completely.
  3. Solve the equation $$4 \cos ^ { 3 } \theta - 7 \cos \theta - 3 = 0$$ for \(0 \leqslant \theta \leqslant 2 \pi\). Give each solution for \(\theta\) in an exact form.