Trigonometric substitution equations

Questions where the final equation involves solving for a trigonometric function (sin θ, cos θ, tan θ, sec θ, or cosec θ) after factorising the polynomial.

12 questions

CAIE P2 2015 November Q4
4 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 6 x ^ { 3 } + 11 x ^ { 2 } + a x + a$$ where \(a\) is a constant. It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\).
  1. Use the factor theorem to show that \(a = - 4\).
  2. When \(a = - 4\),
    (a) factorise \(\mathrm { p } ( x )\) completely,
    (b) solve the equation \(6 \sec ^ { 3 } \theta + 11 \sec ^ { 2 } \theta + a \sec \theta + a = 0\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P3 2024 June Q7
7 Let \(\mathrm { f } ( x ) = 8 x ^ { 3 } + 54 x ^ { 2 } - 17 x - 21\).
  1. Show that \(x + 7\) is a factor of \(\mathrm { f } ( x )\).
  2. Find the quotient when \(\mathrm { f } ( x )\) is divided by \(x + 7\).
  3. Hence solve the equation $$8 \cos ^ { 3 } \theta + 54 \cos ^ { 2 } \theta - 17 \cos \theta - 21 = 0$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Edexcel C12 2017 October Q7
7. $$g ( x ) = 2 x ^ { 3 } + a x ^ { 2 } - 18 x - 8$$ Given that \(( x + 2 )\) is a factor of \(\mathrm { g } ( x )\),
  1. show that \(a = - 3\)
  2. Hence, using algebra, fully factorise \(\mathrm { g } ( x )\). Using your answer to part (b),
  3. solve, for \(0 \leqslant \theta < 2 \pi\), the equation $$2 \sin ^ { 3 } \theta - 3 \sin ^ { 2 } \theta - 18 \sin \theta = 8$$ giving each answer, in radians, as a multiple of \(\pi\).
Edexcel P2 2020 January Q3
3. $$f ( x ) = 6 x ^ { 3 } + 17 x ^ { 2 } + 4 x - 12$$
  1. Use the factor theorem to show that ( \(2 x + 3\) ) is a factor of \(\mathrm { f } ( x )\).
  2. Hence, using algebra, write \(\mathrm { f } ( x )\) as a product of three linear factors.
  3. Solve, for \(\frac { \pi } { 2 } < \theta < \pi\), the equation $$6 \tan ^ { 3 } \theta + 17 \tan ^ { 2 } \theta + 4 \tan \theta - 12 = 0$$ giving your answers to 3 significant figures.
Edexcel P2 2019 June Q6
6. \(\mathrm { f } ( x ) = k x ^ { 3 } - 15 x ^ { 2 } - 32 x - 12\) where \(k\) is a constant Given ( \(x - 3\) ) is a factor of \(\mathrm { f } ( x )\),
  1. show that \(k = 9\)
  2. Using algebra and showing each step of your working, fully factorise \(\mathrm { f } ( x )\).
  3. Solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation $$9 \cos ^ { 3 } \theta - 15 \cos ^ { 2 } \theta - 32 \cos \theta - 12 = 0$$ giving your answers to one decimal place.
OCR C2 Q9
9. \(f ( x ) = 2 x ^ { 3 } - 5 x ^ { 2 } + x + 2\).
  1. Show that \(( x - 2 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Fully factorise \(\mathrm { f } ( x )\).
  3. Solve the equation \(\mathrm { f } ( x ) = 0\).
  4. Find, in terms of \(\pi\), the values of \(\theta\) in the interval \(0 \leq \theta \leq 2 \pi\) for which $$2 \sin ^ { 3 } \theta - 5 \sin ^ { 2 } \theta + \sin \theta + 2 = 0$$
OCR C2 2009 January Q9
9
  1. The polynomial \(\mathrm { f } ( x )\) is defined by $$\mathrm { f } ( x ) = x ^ { 3 } - x ^ { 2 } - 3 x + 3$$ Show that \(x = 1\) is a root of the equation \(\mathrm { f } ( x ) = 0\), and hence find the other two roots.
  2. Hence solve the equation $$\tan ^ { 3 } x - \tan ^ { 2 } x - 3 \tan x + 3 = 0$$ for \(0 \leqslant x \leqslant 2 \pi\). Give each solution for \(x\) in an exact form.
OCR C2 2013 June Q9
9 The cubic polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 4 x ^ { 3 } - 7 x - 3\).
  1. Find the remainder when \(\mathrm { f } ( x )\) is divided by ( \(x - 2\) ).
  2. Show that ( \(2 x + 1\) ) is a factor of \(\mathrm { f } ( x )\) and hence factorise \(\mathrm { f } ( x )\) completely.
  3. Solve the equation $$4 \cos ^ { 3 } \theta - 7 \cos \theta - 3 = 0$$ for \(0 \leqslant \theta \leqslant 2 \pi\). Give each solution for \(\theta\) in an exact form.
OCR PURE 2066 Q3
3 In this question you must show detailed reasoning.
  1. The polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 2 x ^ { 3 } + 3 x ^ { 2 } - 8 x + 3\).
    1. Show that \(f ( 1 ) = 0\).
    2. Solve the equation \(\mathrm { f } ( x ) = 0\).
  2. Hence solve the equation \(2 \sin ^ { 3 } \theta + 3 \sin ^ { 2 } \theta - 8 \sin \theta + 3 = 0\) for \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\).
Edexcel C2 Q7
7. $$f ( x ) = 2 x ^ { 3 } - 5 x ^ { 2 } + x + 2$$
  1. Show that \(( x - 2 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Fully factorise \(\mathrm { f } ( x )\).
  3. Solve the equation \(\mathrm { f } ( x ) = 0\).
  4. Find the values of \(\theta\) in the interval \(0 \leq \theta \leq 2 \pi\) for which $$2 \sin ^ { 3 } \theta - 5 \sin ^ { 2 } \theta + \sin \theta + 2 = 0$$ giving your answers in terms of \(\pi\).
AQA C4 2013 June Q5
5 The polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 4 x ^ { 3 } - 11 x - 3\).
  1. Use the Factor Theorem to show that ( \(2 x + 3\) ) is a factor of \(\mathrm { f } ( x )\).
  2. Write \(\mathrm { f } ( x )\) in the form \(( 2 x + 3 ) \left( a x ^ { 2 } + b x + c \right)\), where \(a , b\) and \(c\) are integers.
    1. Show that the equation \(2 \cos 2 \theta \sin \theta + 9 \sin \theta + 3 = 0\) can be written as \(4 x ^ { 3 } - 11 x - 3 = 0\), where \(x = \sin \theta\).
    2. Hence find all solutions of the equation \(2 \cos 2 \theta \sin \theta + 9 \sin \theta + 3 = 0\) in the interval \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), giving your solutions to the nearest degree.
OCR AS Pure 2017 Specimen Q6
6 In this question you must show detailed reasoning. The cubic polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 4 x ^ { 3 } + 4 x ^ { 2 } + 7 x - 5\).
  1. Show that \(( 2 x - 1 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Hence solve the equation \(4 \sin ^ { 3 } \theta + 4 \sin ^ { 2 } \theta + 7 \sin \theta - 5 = 0\) for \(0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }\).